Graphene oxide incorporated flexible and free-standing PVDF/ZnO composite membrane for mechanical energy harvesting

被引:13
作者
Kadir, E. S. [1 ]
Gayen, R. N. [1 ]
机构
[1] Presidency Univ, Dept Phys, 86-1 Coll St, Kolkata 700073, India
关键词
Polymer; Composites; PVDF; Energy harvesting; Impedance; POLY(VINYLIDENE FLUORIDE); DIELECTRIC-CONSTANT; HYBRID STRUCTURE; THIN-FILM; PERFORMANCE; NANOGENERATORS; BETA; NANOCOMPOSITE; PHASE; GO;
D O I
10.1016/j.sna.2021.113305
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Here we report the comparative study of mechanical energy harvesting properties of highly flexible, stretchable and free-standing poly (vinylidene fluoride) (PVDF) membranes loaded with various nanofillers like zinc oxide (ZnO), graphene oxide (GO) and ZnO/GO composites. Composite polymer membranes with dominating beta-crystalline phase have been synthesized by effectively simpler and low-cost chemical synthesis method. The mechanical to electrical energy conversion is observed by measuring output voltage and current signal while repetitive mechanical stress is applied to the composite membranes in different modes like tapping, bending and stretching. Sufficient increment in open circuit voltage and short circuit current is observed in each mode of mechanical vibrations applied to both ZnO and GO loaded composite membranes compared to the pristine PVDF host matrix. The enhancement in output deliverable electrical power is attributed to the polar nature of ZnO and the formation of GO conduction network in composite membranes. The self-poled beta-crystalline tri-phase PVDF/ZnO/GO composite membranes demonstrate the best energy harvesting performances among all the composites in each mode of mechanical stresses, making them suitable for flexible nanogenerators. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 47 条
[21]   Flexible PVDF based piezoelectric nanogenerators [J].
Lu, Lijun ;
Ding, Wenqing ;
Liu, Jingquan ;
Yang, Bin .
NANO ENERGY, 2020, 78
[22]   The electroactive β-phase formation in Poly(vinylidene fluoride) by gold nanoparticles doping [J].
Mandal, Dipankar ;
Henkel, Karsten ;
Schmeisser, Dieter .
MATERIALS LETTERS, 2012, 73 :123-125
[23]   Comment on "Preparation and Characterization of Silver-Poly(vinylidene fluoride) Nanocomposites: Formation of Piezoelectric Polymorph of Poly(vinylidene fluoride)" [J].
Mandal, Dipankar ;
Henkel, Karsten ;
Schmeisser, Dieter .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (35) :10567-10569
[24]   Recent trends in piezoelectric actuators for precision motion and their applications: a review [J].
Mohith, S. ;
Upadhya, Adithya R. ;
Navin, Karanth P. ;
Kulkarni, S. M. ;
Rao, Muralidhara .
SMART MATERIALS AND STRUCTURES, 2021, 30 (01)
[25]  
Nallasamy P, 2005, INDIAN J PURE AP PHY, V43, P821
[26]  
Ngo K.D.T., 2007, P ASME C EXP, P597, DOI [10.1115/IMECE2006-14343.IMECE2006-14343, DOI 10.1115/IMECE2006-14343.IMECE2006-14343]
[27]   High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator [J].
Niu, Xushi ;
Jia, Wei ;
Qian, Shuo ;
Zhu, Jie ;
Zhang, Jing ;
Hou, Xiaojuan ;
Mu, Jiliang ;
Geng, Wenping ;
Cho, Jundong ;
He, Jian ;
Chou, Xiujian .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) :979-985
[28]   Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO [J].
Ongun, Merve Zeyrek ;
Oguzlar, Sibel ;
Doluel, Eyyup Can ;
Kartal, Ugur ;
Yurddaskal, Metin .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (03) :1960-1968
[29]   Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates [J].
Park, Kwi-Il ;
Xu, Sheng ;
Liu, Ying ;
Hwang, Geon-Tae ;
Kang, Suk-Joong L. ;
Wang, Zhong Lin ;
Lee, Keon Jae .
NANO LETTERS, 2010, 10 (12) :4939-4943
[30]   Enhanced UV detection by transparent graphene oxide/ZnO composite thin films [J].
Paul, R. ;
Gayen, R. N. ;
Biswas, S. ;
Bhat, S. Venkataprasad ;
Bhunia, R. .
RSC ADVANCES, 2016, 6 (66) :61661-61672