High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition

被引:57
作者
Zhang, Tianbao [1 ]
Wang, Yang [1 ]
Xu, Jing [1 ]
Chen, Lin [1 ]
Zhu, Hao [1 ]
Sun, Qingqing [1 ]
Ding, Shijin [1 ]
Zhang, David Wei [1 ]
机构
[1] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
关键词
atom layer deposition; molybdenum disulfide; wafer-scale; uniformity; field-effect transistor; mobility; CHEMICAL-VAPOR-DEPOSITION; FIELD-EFFECT TRANSISTORS; THIN-FILM; LARGE-AREA; MOBILITY; GROWTH; SCALE; PHOTOLUMINESCENCE; TRANSITION; CARBON;
D O I
10.1088/2053-1583/aa9ea5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wafer-level integration of 2D transition metal disulfide is the key factor for future large-scale integration of the continuously scaling-down devices, and has attracted great attention in recent years. Compared with other ultra-thin film growth methods, atomic layer deposition (ALD) has the advantages of excellent step coverage, uniformity and thickness controllability. In this work, we synthesized large-scale and thickness-controllable MoS2 films on sapphire substrate by ALD at 150 degrees C with molybdenum hexcarbonyl and hexamethyldisilathiane (HMDST) as precursors followed by high-temperature annealing in sulfur atmosphere. HMDST is introduced for the first time to enable a toxic-free process without hazardous sulfur precursors such as H2S and CH3SSCH3. The synthesized MoS2 retains the inherent benefits from the ALD process, including thickness controllability, reproducibility, wafer-level thickness uniformity, and high conformity. Finally, fieldeffect transistor (FET) arrays were fabricated based on the large-area ALD MoS2 films. The top-gate FETs exhibited excellent electrical performance such as high on/off current ratio over 103 and peak room-temperature mobility up to 11.56 cm(2) V-1 s(-1). This work opens up an attractive approach to realize the application of high-quality 2D materials with wafer scale homogeneity.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition [J].
Amani, Matin ;
Chin, Matthew L. ;
Birdwell, A. Glen ;
O'Regan, Terrance P. ;
Najmaei, Sina ;
Liu, Zheng ;
Ajayan, Pulickel M. ;
Lou, Jun ;
Dubey, Madan .
APPLIED PHYSICS LETTERS, 2013, 102 (19)
[2]   Atomic layer deposition of MoS2 thin films [J].
Browning, Robert ;
Padigi, Prasanna ;
Solanki, Raj ;
Tweet, Douglas J. ;
Schuele, Paul ;
Evans, David .
MATERIALS RESEARCH EXPRESS, 2015, 2 (03)
[3]   Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies [J].
Crowell, JE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2003, 21 (05) :S88-S95
[4]   Organic thin-film transistors: A review of recent advances [J].
Dimitrakopoulos, CD ;
Mascaro, DJ .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :11-27
[5]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[6]   The path to ubiquitous and low-cost organic electronic appliances on plastic [J].
Forrest, SR .
NATURE, 2004, 428 (6986) :911-918
[7]  
Franklin AD, 2010, NAT NANOTECHNOL, V5, P858, DOI [10.1038/nnano.2010.220, 10.1038/NNANO.2010.220]
[8]  
Fuhrer MS, 2013, NAT NANOTECHNOL, V8, P146, DOI 10.1038/nnano.2013.30
[9]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[10]   Atomic-scale structure of single-layer MoS2 nanoclusters [J].
Helveg, S ;
Lauritsen, JV ;
Lægsgaard, E ;
Stensgaard, I ;
Norskov, JK ;
Clausen, BS ;
Topsoe, H ;
Besenbacher, F .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :951-954