Critical behavior of two-dimensional magnetic lattice gas model

被引:3
|
作者
Li, L. S. [1 ]
Chen, W. [1 ,2 ]
Dong, W. [2 ]
Chen, X. S. [1 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Key Lab Frontiers Theoret Phys, Beijing 100190, Peoples R China
[2] Ecole Normale Super Lyon, CNRS, UMR 5182, Chim Lab, F-69364 Lyon 07, France
基金
中国国家自然科学基金;
关键词
ORDER-DISORDER TRANSITION; MONTE-CARLO; HEISENBERG FLUID; RENORMALIZATION;
D O I
10.1140/epjb/e2011-10948-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using Monte Carlo simulations and finite-size scaling, we investigate the critical behavior of two-dimensional magnetic lattice gas at densities rho = 0.90, 0.95, 1.0. There is a ferromagnetic phase transition at each density. As expected, the critical temperature T-c depends on system density rho. Unexpectedly, there is a density dependence of the critical exponent of correlation length v. For densities rho = 0.90, 0.95, 1.0, we obtain the inverse of critical exponent 1/v = 0.835(5), 0.905(5), 1.00(1) respectively. It is found that the ratios of critical exponent beta/v and gamma/v of magnetization and susceptibility are independent of density.
引用
收藏
页码:189 / 193
页数:5
相关论文
共 50 条
  • [31] Universal thermodynamics of a two-dimensional Bose gas
    Rancon, A.
    Dupuis, N.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [32] Critical behavior of low dimensional magnetic systems
    Ozkan, Aycan
    Kutlu, Bulent
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 425 : 78 - 83
  • [33] Thermodynamic and Magnetic Properties of the Two-Dimensional Anisotropic Ising Model with Competing Interactions
    Murtazaev, A. K.
    Ibaev, Zh G.
    PHYSICS OF THE SOLID STATE, 2019, 61 (10) : 1867 - 1871
  • [34] On the topological phase transition of the two-dimensional XY-model on the Voronoi-Delaunay lattice
    Oliveira-Neto, N. M.
    Alves, S. G.
    Silva, R. L.
    Pereira, A. R.
    Moura-Melo, W. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (38)
  • [35] The phase behavior of two-dimensional symmetrical mixtures
    Materniak, S.
    Patrykiejew, A.
    Sokolowski, S.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (24)
  • [36] The two-dimensional ±J Ising spin glass:: a model at its lower critical dimension
    Nobre, FD
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 362 - 370
  • [37] Mapping of the Bak, Tang, and Wiesenfeld sandpile model on a two-dimensional Ising-correlated percolation lattice to the two-dimensional self-avoiding random walk
    Cheraghalizadeh, J.
    Najafi, M. N.
    Dashti-Naserabadi, H.
    Mohammadzadeh, H.
    PHYSICAL REVIEW E, 2017, 96 (05)
  • [38] Configurational entropy of a set of dipoles placed on a two-dimensional lattice
    Dammig Quina, P. L.
    Irurzun, I. M.
    Mola, E. E.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 466 : 435 - 439
  • [39] Phase Transitions in Two-Dimensional Potts Models on the Hexagonal Lattice
    Murtazaev, A. K.
    Babaev, A. B.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 134 (06) : 720 - 724
  • [40] Numerical evidence of a universal critical behavior of two-dimensional and three-dimensional random quantum clock and Potts models
    Anfray, Valentin
    Chatelain, Christophe
    PHYSICAL REVIEW E, 2023, 108 (01)