Staphylococcus aureus DsbA does not have a destabilizing disulfide -: A new paradigm for bacterial oxidative folding

被引:58
作者
Heras, Begona [1 ]
Kurz, Mareike [1 ]
Jarrott, Russell [1 ]
Shouldice, Stephen R. [1 ]
Frei, Patrick [2 ]
Robin, Gautier [1 ]
Cemazar, Masa [1 ]
Thoeny-Meyer, Linda [3 ]
Glockshuber, Rudi [2 ]
Martin, Jennifer L. [1 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[2] ETH, Inst Mol Biol & Biophys, CH-8093 Zurich, Switzerland
[3] EMPA, Lab Biomat, CH-9014 St Gallen, Switzerland
关键词
D O I
10.1074/jbc.M707838200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Gram-negative bacteria, the introduction of disulfide bonds into folding proteins occurs in the periplasm and is catalyzed by donation of an energetically unstable disulfide from DsbA, which is subsequently re-oxidized through interaction with DsbB. Gram-positive bacteria lack a classic periplasm but nonetheless encode Dsb-like proteins. Staphylococcus aureus encodes just one Dsb protein, a DsbA, and no DsbB. Here we report the crystal structure of S. aureus DsbA (SaDsbA), which incorporates a thioredoxin fold with an inserted helical domain, like its Escherichia coli counterpart EcDsbA, but it lacks the characteristic hydrophobic patch and has a truncated binding groove near the active site. These findings suggest that SaDsbA has a different substrate specificity than EcDsbA. Thermodynamic studies indicate that the oxidized and reduced forms of SaDsbA are energetically equivalent, in contrast to the energetically unstable disulfide form of EcDsbA. Further, the partial complementation of EcDsbA by SaDsbA is independent of EcDsbB and biochemical assays show that SaDsbA does not interact with EcDsbB. The identical stabilities of oxidized and reduced SaDsbA may facilitate direct re-oxidation of the protein by extracellular oxidants, without the need for DsbB.
引用
收藏
页码:4261 / 4271
页数:11
相关论文
共 60 条
[1]   Disulfide bonds are generated by quinone reduction [J].
Bader, MW ;
Xie, T ;
Yu, CA ;
Bardwell, JCA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26082-26088
[2]   A PATHWAY FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
LEE, JO ;
JANDER, G ;
MARTIN, N ;
BELIN, D ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :1038-1042
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]  
Charbonnier JB, 1999, PROTEIN SCI, V8, P96
[5]  
DeLano W.L., 2002, DELANO SCI
[6]   Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168 [J].
Dorenbos, R ;
Stein, T ;
Kabel, J ;
Bruand, C ;
Bolhuis, A ;
Bron, S ;
Quax, WJ ;
van Dijl, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (19) :16682-16688
[7]   Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity [J].
Dumoulin, A ;
Grauschopf, U ;
Bischoff, M ;
Thöny-Meyer, L ;
Berger-Bächi, B .
ARCHIVES OF MICROBIOLOGY, 2005, 184 (02) :117-128
[8]   Comparison of the beta-toxins from Staphylococcus aureus and Staphylococcus intermedius [J].
Dziewanowska, K ;
Edwards, VM ;
Deringer, JR ;
Bohach, GA ;
Guerra, DJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 335 (01) :102-108
[9]   RtsA coordinately regulates DsbA and the Salmonella pathogenicity island 1 type III secretion system [J].
Ellermeier, CD ;
Slauch, JM .
JOURNAL OF BACTERIOLOGY, 2004, 186 (01) :68-79
[10]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132