On the design of multifilter banks and orthonormal multiwavelet bases

被引:75
作者
Jiang, QT
机构
[1] Peking Univ, Dept Math, Beijing, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
关键词
balanced orthonormal multiwavelet; multifilter bank; orthonormal multiwavelet; orthonormal multiwavelet pair; parametrization; scaling function; symmetry; time-frequency resolution;
D O I
10.1109/78.735304
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several forms of parametric expressions for orthogonal multifilter banks are presented. The explicit expressions for a group of orthogonal multifilter banks that generate symmetric/antisymmetric scaling functions and orthonormal multiwavelets are obtained. Based on these parametric expressions for orthogonal multifilter banks, orthonormal multiwavelet pairs with good time-frequency localization are constructed, and examples of optimal multifilter banks are provided.
引用
收藏
页码:3292 / 3303
页数:12
相关论文
共 32 条
[1]  
Akansu A.N., 1992, Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets
[2]   A study of orthonormal multi-wavelets [J].
Chui, CK ;
Lian, JA .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (03) :273-298
[3]   Biorthogonal wavelet expansions [J].
Dahmen, W ;
Micchelli, CA .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (03) :293-328
[4]   Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) :1791-1815
[5]   Construction of orthogonal wavelets using fractal interpolation functions [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP ;
Massopust, PR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1158-1192
[6]  
DORIZE C, 1991, P IEEE INT C AC SPEE, P2029
[7]   FRACTAL FUNCTIONS AND WAVELET EXPANSIONS BASED ON SEVERAL SCALING FUNCTIONS [J].
GERONIMO, JS ;
HARDIN, DP ;
MASSOPUST, PR .
JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) :373-401
[8]   WAVELETS IN WANDERING SUBSPACES [J].
GOODMAN, TNT ;
LEE, SL ;
TANG, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) :639-654
[9]  
GOPINATH RA, 1992, WAVELET TUTORIAL THE
[10]   TIME-FREQUENCY LOCALIZATION IN TRANSFORMS, SUBBANDS, AND WAVELETS - A CRITICAL-REVIEW [J].
HADDAD, RA ;
AKANSU, AN ;
BENYASSINE, A .
OPTICAL ENGINEERING, 1993, 32 (07) :1411-1429