An efficient offline implementation for output feedback min-max MPC

被引:38
作者
Hu, Jianchen [1 ]
Ding, Baocang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Dept Automat, Xian 710049, Shaanxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
model predictive control; offline approach; output feedback; uncertain system; MODEL-PREDICTIVE CONTROL; LPV SYSTEMS; STABILITY;
D O I
10.1002/rnc.4401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Previous works have presented the output feedback min-max model predictive control (MPC) for the discrete-time system with both polytopic uncertainty and bounded persistent disturbance, where the controller parameters are optimized at each sampling instant. This paper proposes the corresponding offline approach in order to reduce the online computational burden. Such offline MPC, when the state is measurable and there is no disturbance, has been constructed in the work of Wan and Kothare (An efficient off-line formulation of robust model predictive control using linear matrix inequalities. Automatica. 2003;39(5):837-846). Since this paper considers the case when the true state is unknown, the ellipsoidal regions of attraction (applying only to the estimated state) lose their asymptotic invariance property, and the estimation error set (EES) has a major effect on the control performance. This paper refreshes EES invoking the one-step reachable set and guarantees that the signals being penalized in the performance cost function to converge to a neighborhood of the equilibrium point. Two examples are given to illustrate the effectiveness of the approach.
引用
收藏
页码:492 / 506
页数:15
相关论文
共 28 条
  • [1] Angeli D, 2002, 41 IEEE C DEC CONTR
  • [2] An ellipsoidal off-line MPC scheme for uncertain polytopic discrete-time systems
    Angeli, David
    Casavola, Alessandro
    Franze, Giuseppe
    Mosca, Edoardo
    [J]. AUTOMATICA, 2008, 44 (12) : 3113 - 3119
  • [3] [Anonymous], ROBUST MODEL PREDICT
  • [4] An ellipsoidal off-line model predictive control strategy for linear parameter varying systems with applications in chemical processes
    Bumroongsri, P.
    Kheawhom, S.
    [J]. SYSTEMS & CONTROL LETTERS, 2012, 61 (03) : 435 - 442
  • [5] Stochastic model predictive control of LPV systems via scenario optimization
    Calafiore, Giuseppe C.
    Fagiano, Lorenzo
    [J]. AUTOMATICA, 2013, 49 (06) : 1861 - 1866
  • [6] Optimizing prediction dynamics for robust MPC
    Cannon, M
    Kouvaritakis, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) : 1892 - 1897
  • [7] Ding B, 2011, 30 CHIN CONTR C
  • [8] A synthesis approach for output feedback robust constrained model predictive control
    Ding, Baocang
    Xi, Yugeng
    Cychowski, Marcin T.
    O'Mahony, Thomas
    [J]. AUTOMATICA, 2008, 44 (01) : 258 - 264
  • [9] Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance
    Ding, Baocang
    Pan, Hongguang
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (08) : 1554 - 1571
  • [10] Dynamic output feedback robust model predictive control
    Ding, Baocang
    Huang, Biao
    Xu, Fangwei
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (10) : 1669 - 1682