Bilipschitz embeddings of metric spaces into space forms

被引:91
作者
Lang, U
Plaut, C
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
Bilipschitz embeddings; metric spaces; doubling property; Gromov hyperbolicity;
D O I
10.1023/A:1012093209450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper describes some basic geometric tools to construct bilipschitz embeddings of metric spaces into (finite-dimensional) Euclidean or hyperbolic spaces. One of the main results implies the following: If X is a geodesic metric space with convex distance function and the property that geodesic segments can be extended to rays, then X admits a bilipschitz embedding into some Euclidean space X has the doubling property, and X admits a bilipschitz embedding into some hyperbolic space X is Gromov hyperbolic and doubling up to some scale. In either case the image of the embedding is shown to be a Lipschitz retract in the target space, provided X is complete.
引用
收藏
页码:285 / 307
页数:23
相关论文
共 25 条
[1]  
Alexander S., 1990, ENSEIGN MATH, V36, P309, DOI [10.5169/seals-57911, DOI 10.5169/SEALS-57911]
[2]  
Almgren F., 1962, Topology, P257
[3]   Currents in metric spaces [J].
Ambrosio, L ;
Kirchheim, B .
ACTA MATHEMATICA, 2000, 185 (01) :1-80
[4]  
ASSOUAD P, 1979, CR ACAD SCI A MATH, V288, P731
[5]  
ASSOUAD P, 1983, B SOC MATH FR, V111, P429
[6]  
BERESTOVSKII VN, 1975, SIBERIAN MATH J+, V16, P499
[7]  
BONK M, EMBEDDINGS GROMOV HY
[8]  
Bridson M.R., 1999, METRIC SPACES NONPOS
[9]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[10]  
GROMOV M, 1983, J DIFFER GEOM, V18, P1