Modelling, identification, and compensation of fractional-order creep in frequency domain for piezoactuators

被引:1
|
作者
Lie, Yanfang [1 ,2 ]
Liu, Hong [1 ]
Zhu, Dongfang [3 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Dept Aerosp Engn, Harbin 150001, Peoples R China
[3] Shanghai Inst Spaceflight Control Technol, Shanghai Key Lab Aerosp Intelligent Control Techn, Shanghai 201109, Peoples R China
基金
中国博士后科学基金;
关键词
HYSTERESIS;
D O I
10.1049/el.2016.0611
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unlike traditionally studied in time domain, the creep in a piezoelectric actuator is studied in frequency domain. It is modelled as a fractional-order integrator, identified in frequency domain, and compensated for by connecting with a fractional-order differentiator in serial. It is demonstrated that identification and compensation in frequency domain are much simpler to execute than that in time domain. Experimental results validate the effectiveness of the proposed algorithm and the creep non-linearity reduces by greater than 80%.
引用
收藏
页码:1444 / U100
页数:2
相关论文
共 50 条
  • [1] Identification of the Fractional-Order Systems: A Frequency Domain Approach
    Dzielinski, Andrzej
    Sierociuk, Dominik
    Sarwas, Grzegorz
    Petras, Ivo
    Podlubny, Igor
    Skovranek, Tomas
    ACTA MONTANISTICA SLOVACA, 2011, 16 (01) : 26 - 33
  • [2] FRACTIONAL-ORDER MODELLING AND PARAMETER IDENTIFICATION OF ELECTRICAL COILS
    Abuaisha, Tareq
    Kertzscher, Jana
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (01) : 193 - 216
  • [3] Fractional order modelling of fractional-order holds
    Tenreiro Machado, J. A.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 789 - 796
  • [4] Fractional-order Modelling and Parameter Identification of Electrical Coils
    Tareq Abuaisha
    Jana Kertzscher
    Fractional Calculus and Applied Analysis, 2019, 22 : 193 - 216
  • [5] Fractional order modelling of fractional-order holds
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2012, 70 : 789 - 796
  • [6] Grey Box Identification of Fractional-order System Models from Frequency Domain Data
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Belikov, Juri
    2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, : 319 - 322
  • [7] Fractional-Order System Identification of Viscoelastic Behavior: A Frequency Domain Based Experimental Study
    Kapp, Daniela
    Weise, Christoph
    Ruderman, Michael
    Reger, Johann
    2020 IEEE 16TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2020, : 153 - 160
  • [8] Research on identification of irrational fractional-order systems in frequency domain based on optimization algorithm
    Chen Lanfeng
    Xue Dingyu
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (15) : 4351 - 4357
  • [9] Frequency domain identification of fractional order systems
    Li, Wang
    Zhang, Guo-Qing
    Wang, Yong
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2010, 27 (08): : 1118 - 1122
  • [10] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Xu Li
    Lifu Gao
    International Journal of Control, Automation and Systems, 2022, 20 : 2159 - 2168