Interestingness in Attribute-Oriented Induction (AOI): Multiple-Level Rule Generation

被引:0
作者
Muyeba, Maybin K. [1 ]
Keane, John A. [1 ]
机构
[1] Univ Manchester, Dept Computat, Manchester M60 1QD, Lancs, England
来源
LECTURE NOTES IN COMPUTER SCIENCE <D> | 2000年 / 1910卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Attribute-Oriented Induction (AOI) is a data mining technique that produces simplified descriptive patterns. Classical AOI uses a predictive strategy to determine distinct values of an attribute but generalises attributes indiscriminately i.e. the value 'ANY' is replaced like any other value without restrictions. AOI only produces interesting rules by using interior concepts of attribute hierarchies. The COMPARE algorithm that integrates predictive and lookahead methods and of order complexity O (np), where n and p are input and generalised tuples respectively, is introduced. The latter method determines distinct values of attribute clusters and greatest number of attribute values with a 'common parent' (except parent 'ANY'). When generating rules, a rough set approach to eliminate redundant attributes is used leading to more interesting multiple-level rules with fewer 'ANY' values than classical AOI.
引用
收藏
页码:542 / 549
页数:8
相关论文
共 9 条
[1]  
[Anonymous], MACHINE LEARNING
[2]  
BARBER B, 1997, INT S METH INT SYST, P106
[3]  
CARTER CL, 1994, CS9404 U REG
[4]  
FUDGER D, 1993, INT WORKSH ROUGH SET, P29
[5]  
HAN J, 1991, KNOWLEDGE DISCOVERY, P213
[6]  
MUYEBA KM, 1999, P 3 EUR C PRINC DAT, P448
[7]  
Shan N., 1996, International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), V5, P99, DOI 10.1142/S0218213096000079
[8]  
SILBERSCHATZ A, 1995, P 1 INT C KNOWL DISC, P275
[9]  
YONGJIAN F, 1996, THESIS S FRASER U CA