On the impact of capillarity for strength at the nanoscale

被引:44
作者
Mameka, Nadiia [1 ]
Markmann, Juergen [1 ,2 ]
Weissmueller, Joerg [1 ,2 ]
机构
[1] Helmholtz Zentrum Geesthacht, Inst Mat Res, Mat Mech, Max Planck Str 1, D-21502 Geesthacht, Germany
[2] Hamburg Univ Technol, Inst Mat Phys & Technol, Eissendorfer Str 42, D-21073 Hamburg, Germany
关键词
SURFACE-STRESS; ZERO CHARGE; NANOPOROUS GOLD; METAL; DEFORMATION; BEHAVIOR; FRACTURE; ORIGINS;
D O I
10.1038/s41467-017-01434-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interior of nanoscale crystals experiences stress that compensates for the capillary forces and that can be large, in the order of 1 GPa. Various studies have speculated on whether and how this surface-induced stress affects the stability and plasticity of small crystals. Yet, experiments have so far failed to discriminate between the surface contribution and other, bulk-related size effects. To clarify the issue, here we study the variation of the flow stress of a nanomaterial while distinctly different variations of the two capillary parameters, surface tension, and surface stress, are imposed under control of an applied electric potential. Our theory qualifies the suggested impact of surface stress as not forceful and instead predicts a significant contribution of the surface energy, as measured by the surface tension. The predictions for the combined potential-dependence and size-dependence of the flow stress are quantitatively supported by the experiment. Previous suggestions, favoring the surface stress as the relevant capillary parameter, are not consistent with our experiment.
引用
收藏
页数:9
相关论文
共 56 条
[1]  
Anderson P.M., 2017, Theory of Dislocations
[2]   ELEMENTARY STEPS OF ELECTROCHEMICAL OXIDATION OF SINGLE-CRYSTAL PLANES OF AU .2. A CHEMICAL AND STRUCTURAL BASIS OF OXIDATION OF THE (111) PLANE [J].
ANGERSTEINKOZLOWSKA, H ;
CONWAY, BE ;
HAMELIN, A ;
STOICOVICIU, L .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 228 (1-2) :429-453
[3]   Mechanical properties of nanoporous gold in tension [J].
Badwe, Nilesh ;
Chen, Xiying ;
Sieradzki, Karl .
ACTA MATERIALIA, 2017, 129 :251-258
[4]  
Biener J., 2008, Micro and Nano Mechanical Testing of Materials and Devices, P118, DOI DOI 10.1007/978-0-387-78701-5_6
[5]   Size effects on the mechanical behavior of nanoporous Au [J].
Biener, Juergen ;
Hodge, Andrea M. ;
Hayes, Joel R. ;
Volkert, Cynthia A. ;
Zepeda-Ruiz, Luis A. ;
Hamza, Alex V. ;
Abraham, Farid F. .
NANO LETTERS, 2006, 6 (10) :2379-2382
[6]   ANION AND PH EFFECTS ON POTENTIALS OF ZERO CHARGE OF GOLD AND SILVER ELECTRODES [J].
BODE, DD ;
ANDERSEN, TN ;
EYRING, H .
JOURNAL OF PHYSICAL CHEMISTRY, 1967, 71 (04) :792-&
[7]  
BUTTNER FH, 1951, T AM I MIN MET ENG, V191, P1209
[8]   SURFACE STRESS AND THE CHEMICAL-EQUILIBRIUM OF SMALL CRYSTALS .2. SOLID PARTICLES EMBEDDED IN A SOLID MATRIX [J].
CAHN, JW ;
LARCHE, F .
ACTA METALLURGICA, 1982, 30 (01) :51-56
[9]   A new method for rapid determination of the potential of zero charge for gold vertical bar solution interfaces [J].
Chen, JH ;
Nie, LH ;
Yao, SZ .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 414 (01) :53-59
[10]   Atomistic simulations of the yielding of gold nanowires [J].
Diao, JK ;
Gall, K ;
Dunn, ML ;
Zimmerman, JA .
ACTA MATERIALIA, 2006, 54 (03) :643-653