Spatio-Spectral Feature Representation for Motor Imagery Classification Using Convolutional Neural Networks

被引:111
作者
Bang, Ji-Seon [1 ]
Lee, Min-Ho [2 ]
Fazli, Siamac [2 ]
Guan, Cuntai [3 ]
Lee, Seong-Whan [1 ,4 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
[2] Nazarbayev Univ, Dept Comp Sci, Nur Sultan 010000, Kazakhstan
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[4] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
关键词
Electroencephalography; Brain modeling; Mutual information; Decoding; Feature extraction; Probability; Entropy; Brain-computer interface (BCI); convolutional neural network (CNN); electroencephalography (EEG); explainable artificial intelligence (XAI); motor imagery (MI); SINGLE-TRIAL EEG; BRAIN-COMPUTER INTERFACE; TIME-SERIES PREDICTION; PERFORMANCE; PATTERNS; SELECTION; SUBJECT; FILTERS; STATE;
D O I
10.1109/TNNLS.2020.3048385
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) have recently been applied to electroencephalogram (EEG)-based brain-computer interfaces (BCIs). EEG is a noninvasive neuroimaging technique, which can be used to decode user intentions. Because the feature space of EEG data is highly dimensional and signal patterns are specific to the subject, appropriate methods for feature representation are required to enhance the decoding accuracy of the CNN model. Furthermore, neural changes exhibit high variability between sessions, subjects within a single session, and trials within a single subject, resulting in major issues during the modeling stage. In addition, there are many subject-dependent factors, such as frequency ranges, time intervals, and spatial locations at which the signal occurs, which prevent the derivation of a robust model that can achieve the parameterization of these factors for a wide range of subjects. However, previous studies did not attempt to preserve the multivariate structure and dependencies of the feature space. In this study, we propose a method to generate a spatiospectral feature representation that can preserve the multivariate information of EEG data. Specifically, 3-D feature maps were constructed by combining subject-optimized and subject-independent spectral filters and by stacking the filtered data into tensors. In addition, a layer-wise decomposition model was implemented using our 3-D-CNN framework to secure reliable classification results on a single-trial basis. The average accuracies of the proposed model were 87.15% (+/- 7.31), 75.85% (+/- 12.80), and 70.37% (+/- 17.09) for the BCI competition data sets IV_2a, IV_2b, and OpenBMI data, respectively. These results are better than those obtained by state-of-the-art techniques, and the decomposition model obtained the relevance scores for neurophysiologically plausible electrode channels and frequency domains, confirming the validity of the proposed approach.
引用
收藏
页码:3038 / 3049
页数:12
相关论文
共 48 条
[1]   Multilevel Weighted Feature Fusion Using Convolutional Neural Networks for EEG Motor Imagery Classification [J].
Amin, Syed Umar ;
Alsulaiman, Mansour ;
Muhammad, Ghulam ;
Bencherif, Mohamed A. ;
Hossain, M. Shamim .
IEEE ACCESS, 2019, 7 :18940-18950
[2]   Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b [J].
Ang, Kai Keng ;
Chin, Zheng Yang ;
Wang, Chuanchu ;
Guan, Cuntai ;
Zhang, Haihong .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[3]   Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs [J].
Ang, Kai Keng ;
Chin, Zheng Yang ;
Zhang, Haihong ;
Guan, Cuntai .
PATTERN RECOGNITION, 2012, 45 (06) :2137-2144
[4]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[5]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[6]   Multiclass Brain-Computer Interface Classification by Riemannian Geometry [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) :920-928
[7]  
Bashivan P., 2015, Learning representations from EEG with deep recurrent-convolutional neural networks
[8]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[9]   The non-invasive Berlin Brain-Computer Interface:: Fast acquisition of effective performance in untrained subjects [J].
Blankertz, Benjamin ;
Dornhege, Guido ;
Krauledat, Matthias ;
Mueller, Klaus-Robert ;
Curio, Gabriel .
NEUROIMAGE, 2007, 37 (02) :539-550
[10]   Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces [J].
Cecotti, Hubert ;
Graeser, Axel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (03) :433-445