Deep Metric Learning to Rank

被引:178
作者
Cakir, Fatih [1 ]
He, Kun [2 ,3 ]
Xia, Xide [2 ]
Kulis, Brian [2 ]
Sclaroff, Stan [2 ]
机构
[1] FirstFuel, Lexington, MA 02420 USA
[2] Boston Univ, Boston, MA 02215 USA
[3] Facebook Real Labs, Pittsburgh, PA USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00196
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel deep metric learning method by revisiting the learning to rank approach. Our method, named FastAP, optimizes the rank-based Average Precision measure, using an approximation derived from distance quantization. FastAP has a low complexity compared to existing methods, and is tailored for stochastic gradient descent. To fully exploit the benefits of the ranking formulation, we also propose a new minibatch sampling scheme, as well as a simple heuristic to enable large-batch training. On three few-shot image retrieval datasets, FastAP consistently outperforms competing methods, which often involve complex optimization heuristics or costly model ensembles.
引用
收藏
页码:1861 / 1870
页数:10
相关论文
共 43 条
[1]  
Aslam Javed A., 2005, P ACM SIGIR C RES DE
[2]  
Bai Yan, 2017, P IEEE INT C MULT EX
[3]  
Bellet A., 2013, SURVEY METRIC LEARNI
[4]  
Boyd Kendrick, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P451, DOI 10.1007/978-3-642-40994-3_29
[5]  
CAKIR F, 2018, ARXIV180300974
[6]  
Cao Z., 2007, P 24 INT C MACH LEAR, P129, DOI [DOI 10.1145/1273496.1273513, 10.1145/1273496.1273513]
[7]   Gradient descent optimization of smoothed information retrieval metrics [J].
Chapelle, Olivier ;
Wu, Mingrui .
INFORMATION RETRIEVAL, 2010, 13 (03) :216-235
[8]   Total recall: Automatic query expansion with a generative feature model for object retrieval [J].
Chum, Ondrej ;
Philbin, James ;
Sivic, Josef ;
Isard, Michael ;
Zisserman, Andrew .
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, :496-+
[9]   Deep Metric Learning with Hierarchical Triplet Loss [J].
Ge, Weifeng ;
Huang, Weilin ;
Dong, Dengke ;
Scott, Matthew R. .
COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 :272-288
[10]   End-to-End Learning of Deep Visual Representations for Image Retrieval [J].
Gordo, Albert ;
Almazan, Jon ;
Revaud, Jerome ;
Larlus, Diane .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 124 (02) :237-254