UNIQUENESS OF UNCONDITIONAL BASIS OF l2 ⊕ T(2)

被引:1
作者
Albiac, Fernando [1 ]
Ansorena, Jose L. [2 ]
机构
[1] Univ Publ Navarra, Dept Math Stat & Comp Sci, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
关键词
Uniqueness of structure; unconditional basis; equivalence of bases; quasi-Banach space; Banach lattice; Hardy spaces; Tsirelson space; DIRECT SUMS; BANACH; PROJECTIONS; BASES;
D O I
10.1090/proc/15670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new extension of Pitt's theorem for compact operators between quasi-Banach lattices which permits to describe unconditional bases of finite direct sums of Banach spaces X-1 circle plus center dot center dot center dot circle plus X-n as direct sums of unconditional bases of their summands. The general splitting principle we obtain yields, in particular, that if each X-i has a unique unconditional basis ( up to equivalence and permutation), then X-1 circle plus center dot center dot center dot circle plus X-n has a unique unconditional basis too. Among the novel applications of our techniques to the structure of Banach and quasi-Banach spaces we have that the space l(2) circle plus T-(2) has a unique unconditional basis.
引用
收藏
页码:709 / 717
页数:9
相关论文
共 14 条
  • [1] A DICHOTOMY FOR SUBSYMMETRIC BASIC SEQUENCES WITH APPLICATIONS TO GARLING SPACES
    Albiac, F.
    Ansorena, J. L.
    Dilworth, S. J.
    Kutzarova, Denka
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 2079 - 2106
  • [2] Albiac F, 2016, GRAD TEXTS MATH, V233, P1, DOI 10.1007/978-3-319-31557-7
  • [3] Albiac F., 2020, UNIQUENESS UNCONDITI
  • [4] Albiac F., 2020, PERMUTATIVE EQUIVALE
  • [5] BOURGAIN J, 1985, MEM AM MATH SOC, V54, P1
  • [6] CASAZZA PG, 1989, LECT NOTES MATH, V1363, P1
  • [7] On Pitt's theorem for operators between scalar and vector-valued quasi-Banach sequence spaces
    Defant, A
    Molina, JAL
    Rivera, MJ
    [J]. MONATSHEFTE FUR MATHEMATIK, 2000, 130 (01): : 7 - 18
  • [8] PROJECTIONS AND UNCONDITIONAL BASES IN DIRECT SUMS OF BANACH-SPACES
    EDELSTEIN, IS
    WOJTASZCZYK, P
    [J]. STUDIA MATHEMATICA, 1976, 56 (03) : 263 - 276
  • [9] DIMENSION OF ALMOST SPHERICAL SECTIONS OF CONVEX BODIES
    FIGIEL, T
    LINDENSTRAUSS, J
    MILMAN, VD
    [J]. ACTA MATHEMATICA, 1977, 139 (1-2) : 53 - 94
  • [10] Johnson W. B., 1980, Special Topics of Applied Mathematics. Functional Analysis, Numerical Analysis and Optimization. Proceedings of the Seminar, P15