共 50 条
Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation
被引:196
|作者:
Mulroe, Megan D.
[1
]
Srijanto, Bernadeta R.
[2
]
Ahmadi, S. Farzad
[1
]
Collier, C. Patrick
[2
]
Boreyko, Jonathan B.
[1
]
机构:
[1] Virginia Tech, Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
来源:
关键词:
superhydrophobic;
condensation;
jumping droplets;
coalescence;
critical jumping size;
optimizing nanostructure design;
DROPWISE CONDENSATION;
HEAT-TRANSFER;
WATER CONDENSATION;
SELF-ORGANIZATION;
COALESCENCE;
SURFACES;
GROWTH;
MECHANISM;
REMOVAL;
ENERGY;
D O I:
10.1021/acsnano.7b04481
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
It was recently discovered that condensation.growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 pm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, and pitch of the nanopillars: tall and slender nanopillars promoted 2 itm jumping choplets, whereas short and stout nanopillars increased the critical size to over 20 mu m. The topology, of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. By extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping -droplet condensers for heat transfer, antifogging, and antifrosting applications.
引用
收藏
页码:8499 / 8510
页数:12
相关论文