Effect of Ti Content on the Microstructure and Properties of CoCrFeNiMnTix High Entropy Alloy

被引:39
作者
Chen, Yuhua [1 ]
Liu, Wenkuo
Wang, Hongwei
Xie, Jilin [2 ]
Zhang, Timing
Yin, Limeng [1 ]
Huang, Yongde
机构
[1] Chongqing Univ Sci & Technol, Sch Met & Mat Engn, Chongqing 401331, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
high entropy alloy; Ti element modification; microstructure; properties; MECHANICAL-PROPERTIES; STRUCTURAL EVOLUTION; TENSILE PROPERTIES; WEAR BEHAVIOR; CORROSION; AL; STABILITY; STRENGTH; HARDNESS; X=0;
D O I
10.3390/e24020241
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this study was to investigate the effects of the Ti element addition on the microstructure and properties of CoCrFeNiMn high entropy alloys. The Ti element modified CoCrFeNiMnTix high entropy alloys were prepared by vacuum arc melting processing. The Ti rich body-centered cubic structure phase was observed in CoCrFeNiMnTi0.25 and CoCrFeNiMnTi0.55 instead of a simple face-centered cubic structure in CoCrFeNiMn. The amount of the Ti-rich phase depicted an increasing trend with increasing Ti content. Simultaneously, the mechanical properties of CoCrFeNiMnTix were obviously improved. When the Ti content is 0, 0.25 and 0.55, the microhardness is 175 HV, 253 HV and 646 HV, which has an obvious increasing trend, while the ductility decreased. The tensile properties show a trend of first strengthening and then decreasing, changing from 461 MPa to 631 MPa and then to 287 MPa. When x was 0.55, the solid-liquid transition temperature of the alloy decreased, and the melting temperature range increased.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys [J].
Butler, Todd M. ;
Weaver, Mark L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 674 :229-244
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]  
Chen, 2021, J NETSHAPE FORM ENG, V13, P81
[4]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[5]  
Fan Y., 2019, J NETSHAPE FORM ENG, V11, P178
[6]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J].
Gorr, B. ;
Azim, M. ;
Christ, H. -J. ;
Mueller, T. ;
Schliephake, D. ;
Heilmaier, M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 624 :270-278
[9]   Microstructure and Mechanical Properties of CoCrFeMnNiSnx High-Entropy Alloys [J].
Gu, X. Y. ;
Dong, Y. N. ;
Zhuang, Y. X. ;
Wang, J. .
METALS AND MATERIALS INTERNATIONAL, 2020, 26 (03) :292-301
[10]   Microstructures and mechanical properties of TixNbMoTaW refractory high entropy alloys [J].
Han, Z. D. ;
Luan, H. W. ;
Liu, X. ;
Chen, N. ;
Li, X. Y. ;
Shao, Y. ;
Yao, K. F. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 712 :380-385