Optimal multilinear estimation of a random vector under constraints of causality and limited memory

被引:1
|
作者
Howlett, P. G. [2 ]
Torokhti, A. [2 ]
Pearce, C. E. M. [1 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Univ S Australia, Sch Math Sci, Adelaide, SA 5095, Australia
关键词
random vectors; multilinear estimation; finite memory; causality; least squares singular pivot algorithm;
D O I
10.1016/j.csda.2006.10.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new technique is provided for random vector estimation from noisy data under the constraints that the estimator is causal and dependent on at most a finite number p of observations. Nonlinear estimators defined by multilinear operators of degree r are employed, the choice of r allowing a trade-off between the accuracy of the optimal filter and the complexity of the calculations. The techniques utilise an exact correspondence of the nonlinear problem to a corresponding linear one. This is then solved by a new procedure, the least squares singular pivot algorithm, whereby the linear problem can be repeated reduced to smaller structurally similar problems. Invertibility of the relevant covariance matrices is not assumed. Numerical experiments with real data are used to illustrate the efficacy of the new algorithm. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:869 / 878
页数:10
相关论文
共 50 条
  • [1] Data compression under constraints of causality and variable finite memory
    Torokhti, A.
    Miklavcic, S. J.
    SIGNAL PROCESSING, 2010, 90 (10) : 2822 - 2834
  • [2] Optimal random search using limited spatial memory
    Sakiyama, Tomoko
    Gunji, Yukio-Pegio
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (03):
  • [3] Learning Optimal Decision Trees Under Memory Constraints
    Aglin, Gael
    Nijssen, Siegfried
    Schaus, Pierre
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT V, 2023, 13717 : 393 - 409
  • [4] OPTIMAL LIST ORDER UNDER PARTIAL MEMORY CONSTRAINTS
    KAN, YC
    ROSS, SM
    JOURNAL OF APPLIED PROBABILITY, 1980, 17 (04) : 1004 - 1015
  • [5] ASYMPTOTICALLY OPTIMAL PARAMETER ESTIMATION UNDER COMMUNICATION CONSTRAINTS
    Fellouris, Georgios
    ANNALS OF STATISTICS, 2012, 40 (04): : 2239 - 2265
  • [6] Optimal Sampling of Random Processes under Stochastic Energy Constraints
    Yang, Jing
    Wu, Jingxian
    2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014), 2014, : 3377 - 3382
  • [7] Random Subspace with Trees for Feature Selection Under Memory Constraints
    Sutera, Antonio
    Chatel, Celia
    Louppe, Gilles
    Wehenkel, Louis
    Geurts, Pierre
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [8] Decentralized Random-Field Estimation Under Communication Constraints
    Uney, Murat
    Cetin, Muejdat
    2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 754 - 757
  • [9] ESTIMATION OF A RANDOM COEFFICIENT MODEL UNDER LINEAR STOCHASTIC CONSTRAINTS
    SRIVASTAVA, VK
    RAJ, B
    KUMAR, K
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1984, 36 (03) : 395 - 401
  • [10] Unweighted estimation based on optimal sample under measurement constraints
    Wang, Jing
    Wang, HaiYing
    Xiong, Shifeng
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (01): : 291 - 309