Search Trajectories Networks of Multiobjective Evolutionary Algorithms

被引:9
作者
Lavinas, Yuri [1 ]
Aranha, Claus [1 ]
Ochoa, Gabriela [2 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Univ Stirling, Stirling, Scotland
来源
APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2022) | 2022年
关键词
Algorithm analysis; Search trajectories; Continuous optimization; Visualization; Multi-objective optimization; MOEA/D;
D O I
10.1007/978-3-031-02462-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the search dynamics of multiobjective evolutionary algorithms (MOEAs) is still an open problem. This paper extends a recent network-based tool, search trajectory networks (STNs), to model the behavior of MOEAs. Our approach uses the idea of decomposition, where a multiobjective problem is transformed into several single-objective problems. We show that STNs can be used to model and distinguish the search behavior of two popular multiobjective algorithms, MOEA/D and NSGA-II, using 10 continuous benchmark problems with 2 and 3 objectives. Our findings suggest that we can improve our understanding of MOEAs using STNs for algorithm analysis.
引用
收藏
页码:223 / 238
页数:16
相关论文
共 23 条
[1]   SMS-EMOA: Multiobjective selection based on dominated hypervolume [J].
Beume, Nicola ;
Naujoks, Boris ;
Emmerich, Michael .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1653-1669
[2]  
Bossek J., 2017, SMOOF SINGLE MULTIOB
[3]  
Campelo F., 2018, MOEADr: Component-wise MOEA/D implementation, R package version 1.2.0
[4]  
Campelo F, 2018, Arxiv, DOI arXiv:1807.06731
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]   Visualising the Landscape of Multi-Objective Problems using Local Optima Networks [J].
Fieldsend, Jonathan E. ;
Alyahya, Khulood .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, :1421-1429
[7]  
Fonseca C. M., 1996, Parallel Problem Solving from Nature - PPSN IV. International Conference on Evolutionary Computation - The 4th International Conference on Parallel Problem Solving from Nature. Proceedings, P584, DOI 10.1007/3-540-61723-X_1022
[8]  
Kerschke Pascal, 2017, Evolutionary Multi-Criterion Optimization. 9th International Conference, EMO 2017. Proceedings: LNCS 10173, P329, DOI 10.1007/978-3-319-54157-0_23
[9]   Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties [J].
Li, Hui ;
Deb, Kalyanmoy ;
Zhang, Qingfu ;
Suganthan, P. N. ;
Chen, Lei .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 46 :104-117
[10]   Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II [J].
Li, Hui ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) :284-302