SOFIC REPRESENTATIONS OF AMENABLE GROUPS

被引:36
作者
Elek, Gabor [1 ]
Szabo, Endre [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Math Inst, H-1364 Budapest, Hungary
关键词
Sofic groups; amenable groups; amalgamated products;
D O I
10.1090/S0002-9939-2011-11222-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using probabilistic methods, Collins and Dykema proved that the free product of two sofic groups amalgamated over a monotileabe amenable subgroup is sofic as well. We show that the restriction is unnecessary; the free product of two sofic groups amalgamated over an arbitrary amenable subgroup is sofic. We also prove a group-theoretical analogue of a result of Kenley Jung. A finitely generated group is amenable if and only if it has only one sofic representation up to conjugacy equivalence.
引用
收藏
页码:4285 / 4291
页数:7
相关论文
共 8 条
[1]  
COLLINS B, MUNSTER J M IN PRESS
[2]   Hyperlinearity, essentially free actions and L2-invariants.: The sofic property [J].
Elek, G ;
Szabó, E .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :421-441
[3]   THE COMBINATORIAL COST [J].
Elek, Gabor .
ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (3-4) :225-235
[4]   The strong approximation conjecture holds for amenable groups [J].
Elek, Gabor .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 239 (01) :345-355
[5]   On sofic groups [J].
Elek, Gabor ;
Szabo, Endre .
JOURNAL OF GROUP THEORY, 2006, 9 (02) :161-171
[6]  
Jung K, 2007, MATH ANN, V338, P241, DOI 10.1007/s00208-006-0074-y
[7]  
PAUNESCU L, SOFIC ACTIONS EQUIVA
[8]   HYPERLINEAR AND SOFIC GROUPS: A BRIEF GUIDE [J].
Pestov, Vladimir G. .
BULLETIN OF SYMBOLIC LOGIC, 2008, 14 (04) :449-480