Lower order eigenvalues of a system of equations of the drifting Laplacian on the metric measure spaces

被引:3
作者
Sun, He-Jun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Dept Math, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue; Universal inequality; Metric measure space; Gradient Ricci soliton; The drifting Laplacian; UNIVERSAL INEQUALITIES; ELLIPTIC-EQUATIONS;
D O I
10.1007/s00013-017-1131-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a bounded domain with smooth boundary in an n-dimensional metric measure space and let be a vector-valued function from to . In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: , in , and where is the drifting Laplacian and is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space and the Gaussian shrinking soliton . Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton , where is an Einstein manifold with constant Ricci curvature .
引用
收藏
页码:291 / 303
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1939, ARK MAT ASTRON FYS
[2]  
[Anonymous], 1985, MATH METHODS APPL SC, DOI [DOI 10.1002/MMA.1670070113, 10.1002/mma.1670070113]
[3]   On eigenvalues of a system of elliptic equations and of the biharmonic operator [J].
Chen, Daguang ;
Cheng, Qing-Ming ;
Wang, Qiaoling ;
Xia, Changyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) :1146-1159
[4]   2-Dimensional complete self-shrinkers in R3 [J].
Cheng, Qing-Ming ;
Ogata, Shiho .
MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) :537-542
[5]   ESTIMATES FOR EIGENVALUES OF £ OPERATOR ON SELF-SHRINKERS [J].
Cheng, Qing-Ming ;
Peng, Yejuan .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (06)
[6]   Universal inequalities for eigenvalues of a system of elliptic equations [J].
Cheng, Qing-Ming ;
Yang, Hong-Cang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :273-285
[7]   Generic mean curvature flow I; generic singularities [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2012, 175 (02) :755-833
[8]   Eigenvalue inequalities for the buckling problem of the drifting Laplacian on Ricci solitons [J].
Du, Feng ;
Mao, Jing ;
Wang, Qiaoling ;
Wu, Chuanxi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) :5533-5564
[9]   DOMAIN-INDEPENDENT UPPER-BOUNDS FOR EIGENVALUES OF ELLIPTIC-OPERATORS [J].
HOOK, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) :615-642
[10]   Perelman's entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature [J].
Li, Xiang-Dong .
MATHEMATISCHE ANNALEN, 2012, 353 (02) :403-437