An elliptic semilinear equation with source term and boundary measure data: The supercritical case

被引:15
作者
Bidaut-Veron, Marie-Francoise [1 ]
Hoang, Giang [1 ]
Quoc-Hung Nguyen [1 ]
Veron, Laurent [1 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, Tours, France
关键词
Riesz potentials; Hardy potentials; Quasi-metric; Capacities; SINGULARITIES; DOMAINS;
D O I
10.1016/j.jfa.2015.06.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give new criteria for the existence of weak solutions to an equation with a super linear source term -Delta u = u(q) in Omega, u = sigma on partial derivative Omega where Omega is either a bounded smooth domain or R-+(N), q > 1 and sigma is an element of m(+)(partial derivative Omega) is a nonnegative Radon measure on partial derivative Omega. One of the criteria we obtain is expressed in terms of some Bessel capacities on partial derivative Omega. We also give a sufficient condition for the existence of weak solutions to equation with source mixed terms. -Delta u = vertical bar u vertical bar(q1-1)u vertical bar del u vertical bar(q2) in Omega, u = sigma on partial derivative Omega where q(1), q(2) >= 0, q(1) + q(2) >1, q(2) < 2, sigma is an element of m(partial derivative Omega) is a Radon measure on partial derivative Omega. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1995 / 2017
页数:23
相关论文
共 18 条
[1]  
Adams DR, 1999, GRUNDLEHREN MATH WIS, V31
[2]  
Bidaut-V?ron M-F., 2002, ADV DIFFERENTIAL EQU, V7, P257
[3]   Quasilinear Lane-Emden equations with absorption and measure data [J].
Bidaut-Veron, Marie-Francoise ;
Nguyen Quoc Hung ;
Veron, Laurent .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (02) :315-337
[4]  
Bidaut-Véron MF, 2000, REV MAT IBEROAM, V16, P477
[5]  
Dynkin EB, 2004, SUPERDIFFUSIONS POSI
[6]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[7]   Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains [J].
Filippas, Stathis ;
Moschini, Luisa ;
Tertikas, Achilles .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (01) :237-281
[8]   Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials [J].
Gkikas, Konstantinos T. ;
Veron, Laurent .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :469-540
[9]   BOUNDARY SINGULARITIES OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
GMIRA, A ;
VERON, L .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (02) :271-324
[10]   Nonlinear equations and weighted norm inequalities [J].
Kalton, NJ ;
Verbitsky, IE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (09) :3441-3497