The Nielsen Borsuk-Ulam number

被引:2
作者
Cotrim, Fabiana Santos [1 ]
Vendruscolo, Daniel [2 ]
机构
[1] Univ Fed Sao Carlos, Ctr Ciencias Nat, Buri, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Borsuk-Ulam Theorem; Nielsen theory; Coincidence theory; COINCIDENCE THEORY; MANIFOLDS;
D O I
10.36045/bbms/1515035010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Nielsen-Borsuk-Ulam number (NBU(f, tau)) is defined for continuous maps f : X -> Y where X and Y are closed orientable triangulable n-manifolds and X has a free involution tau. This number is a lower bound, in the homotopy class of f, for the number of pairs of points in X satisfying f (x) = f o tau(x). It is proved that NBU(f, tau) can be realized (Wecken type theorem) when n >= 3.
引用
收藏
页码:613 / 619
页数:7
相关论文
共 8 条
[1]   Nielsen coincidence theory applied to Borsuk-Ulam geometric problems [J].
Cotrim, Fabiana Santos ;
Vendruscolo, Daniel .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (18) :3738-3745
[2]   THE COINCIDENCE NIELSEN NUMBER ON NONORIENTABLE MANIFOLDS [J].
DOBRENKO, R ;
JEZIERSKI, J .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (01) :67-85
[3]   The Borsuk-Ulam theorem for homotopy spherical space forms [J].
Goncalves, Daciberg L. ;
Spreafico, Mauro ;
Neto, Oziride Manzoli .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 9 (02) :285-294
[4]   The Borsuk-Ulam theorem for maps into a surface [J].
Goncalves, Daciberg Lima ;
Guaschi, John .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) :1742-1759
[5]  
Goncalves DL., 2006, Quaest. Math, V29, P117, DOI [10.2989/16073600609486153, DOI 10.2989/16073600609486153]
[6]   THE SEMI-INDEX PRODUCT FORMULA [J].
JEZIERSKI, J .
FUNDAMENTA MATHEMATICAE, 1992, 140 (02) :99-120
[7]   THE NIELSEN COINCIDENCE THEORY ON TOPOLOGICAL MANIFOLDS [J].
JEZIERSKI, J .
FUNDAMENTA MATHEMATICAE, 1993, 143 (02) :167-178
[8]   Some generalizations of the Borsuk-Ulam Theorem [J].
Vendruscolo, Daniel ;
Desideri, Patricia E. ;
Pergher, Pedro L. Q. .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4) :583-593