共 2 条
Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion
被引:31
作者:
Dawood, M. K.
[1
]
Zheng, H.
[1
]
Kurniawan, N. A.
[2
]
Leong, K. C.
[3
]
Foo, Y. L.
[4
]
Rajagopalan, R.
[2
,5
]
Khan, S. A.
[2
,5
]
Choi, W. K.
[1
,6
]
机构:
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
[3] GLOBALFOUNDRIES Singapore Pte Ltd, Singapore 738406, Singapore
[4] ASTAR, Inst Mat Res & Engn, Singapore 117602, Singapore
[5] Singapore MIT Alliance, Chem & Pharmaceut Engn Programme, Singapore 117576, Singapore
[6] Singapore MIT Alliance, Adv Mat Micro & Nanosyst Programme, Singapore 117576, Singapore
来源:
关键词:
SILICON SURFACES;
ADHESION;
WATER;
COALESCENCE;
PARTICLES;
LOTUS;
FILMS;
SHAPE;
MEMS;
D O I:
10.1039/c2sm07279c
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We describe a new scalable method to fabricate large-area hybrid superhydrophobic surfaces with selective adhesion properties on silicon (Si) nanowire array substrates by exploiting liquid-medium-dependent capillary-force-induced nanocohesion. Gold (Au) nanoparticles were deposited on Si by glancing angle deposition followed by metal-assisted chemical etching of Si to form Si nanowire arrays. The surfaces were dried in either deionized (DI) water, 2-propanol or methanol to vary the capillary forces exerted on the Si nanowires during the drying process in order to tune the extent of clustering of nanowires and hence the adhesion properties of the resulting superhydrophobic surfaces. Here, we exploit the combined effects of surface tension and Young's contact angle to modulate the degree of clustering of the Si nanowires during capillary-force-induced nanocohesion. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Drying in DI water resulted in small clusters of nanowires which produce a low-hysteresis superhydrophobic surface that mimics a lotus leaf. Drying in methanol resulted in large nanowire clusters that lead to a high-hysteresis superhydrophobic surface. Further, we demonstrate the ability to fabricate both small and large nanowire clusters by controlling the drying of the nanowire arrays in order to selectively define and modulate adhesion of water on the same superhydrophobic substrate. The simplicity of our process to tune surface wettability on single substrates paves the way for future applications in lab-on-chip devices and platforms for chemical and biological analyses.
引用
收藏
页码:3549 / 3557
页数:9
相关论文