A Bayesian framework for joint morphometry of surface and curve meshes in multi-object complexes

被引:20
作者
Gori, Pietro [1 ,2 ,3 ,4 ,5 ]
Colliot, Olivier [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Marrakchi-Kacem, Linda [1 ,2 ,3 ,4 ,5 ]
Worbe, Yulia [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Poupon, Cyril [8 ]
Hartmann, Andreas [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Ayache, Nicholas [9 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ,5 ]
机构
[1] Inria, Aramis Project Team, Paris, France
[2] UPMC Univ Paris 06, Sorbonne Univ, UM 75, ICM, F-75013 Paris, France
[3] INSERM, ICM, U1127, F-75013 Paris, France
[4] CNRS, ICM, UMR 7225, F-75013 Paris, France
[5] Inst Cerveau & Moelle Epiniere, Paris, France
[6] Hop La Pitie Salpetriere, AP HP, Dept Neurol, F-75013 Paris, France
[7] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, F-75013 Paris, France
[8] CEA, NeuroSpin, Gif Sur Yvette, France
[9] Inria, Asclepios Project Team, Sophia Antipolis, France
关键词
Shape; Bayesian; Varifolds; Fiber bundle; Morphometry; Complex; Multi-object; Atlas; SHAPE; REGISTRATION; MODELS;
D O I
10.1016/j.media.2016.08.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a Bayesian framework for atlas construction of multi-object shape complexes comprised of both surface and curve meshes. It is general and can be applied to any parametric deformation framework and to all shape models with which it is possible to define probability density functions (PDF). Here, both curve and surface meshes are modelled as Gaussian random varifolds, using a finite-dimensional approximation space on which PDFs can be defined. Using this framework, we can automatically estimate the parameters balancing data-terms and deformation regularity, which previously required user tuning. Moreover, it is also possible to estimate a well-conditioned covariance matrix of the deformation parameters. We also extend the proposed framework to data-sets with multiple group labels. Groups share the same template and their deformation parameters are modelled with different distributions. We can statistically compare the groups'distributions since they are defined on the same space. We test our algorithm on 20 Gilles de la Tourette patients and 20 control subjects, using three sub-cortical regions and their incident white matter fiber bundles. We compare their morphological characteristics and variations using a single diffeomorphism in the ambient space. The proposed method will be integrated with the Deformetrica software package, publicly available at www.deformetrica.org. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:458 / 474
页数:17
相关论文
共 51 条
  • [1] Allassonnière S, 2007, J R STAT SOC B, V69, P3
  • [2] Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study
    Allassonniere, Stephanie
    Kuhn, Estelle
    Trouve, Alain
    [J]. BERNOULLI, 2010, 16 (03) : 641 - 678
  • [3] Diffeomorphic Brain Registration Under Exhaustive Sulcal Constraints
    Auzias, Guillaume
    Colliot, Olivier
    Glaunes, Joan Alexis
    Perrot, Matthieu
    Mangin, Jean-Francois
    Trouve, Alain
    Baillet, Sylvain
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (06) : 1214 - 1227
  • [4] Geodesic estimation for large deformation anatomical shape averaging and interpolation
    Avants, B
    Gee, JC
    [J]. NEUROIMAGE, 2004, 23 : S139 - S150
  • [5] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [6] Statistical analysis of relative pose information of subcortical nuclei: Application on ADNI data
    Bossa, Matias
    Zacur, Ernesto
    Olmos, Salvador
    [J]. NEUROIMAGE, 2011, 55 (03) : 999 - 1008
  • [7] Cates J, 2008, LECT NOTES COMPUT SC, V5241, P477, DOI 10.1007/978-3-540-85988-8_57
  • [8] CHARLIER B, 2014, ARXIV14046039CSMATH
  • [9] The Varifold Representation of Nonoriented Shapes for Diffeomorphic Registration
    Charon, Nicolas
    Trouve, Alain
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04): : 2547 - 2580
  • [10] Cury C, 2017, COMP M BIO BIO E-IV, V5, P350, DOI 10.1080/21681163.2015.1035403