Stochastic circuit modelling with Hermite polynomial chaos

被引:24
作者
Su, Q [1 ]
Strunz, K [1 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
关键词
D O I
10.1049/el:20052415
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hermite polynomial chaos is used to create models of electric circuit branches for the study of random changes of parameters. The proposed method allows for seamless integration with nodal analysis. An analogy of Fourier series and Hermite polynomial chaos expansion is introduced to explain the methodology Compared with root-sum-square and Monte Carlo methods, the proposed method is shown to be fast and accurate.
引用
收藏
页码:1163 / 1165
页数:3
相关论文
共 50 条
  • [41] Identification and prediction of stochastic dynamical systems in a polynomial chaos basis
    Ghanem, R
    Masri, S
    Pellissetti, M
    Wolfe, R
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (12-16) : 1641 - 1654
  • [42] Simulation of Stochastic Quantum Systems Using Polynomial Chaos Expansions
    Young, Kevin C.
    Grace, Matthew D.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [43] A splitting/polynomial chaos expansion approach for stochastic evolution equations
    Andreas Kofler
    Tijana Levajković
    Hermann Mena
    Alexander Ostermann
    [J]. Journal of Evolution Equations, 2021, 21 : 1345 - 1381
  • [44] Application of polynomial chaos on numerical simulation of stochastic cavity flow
    Wang XiaoDong
    Kang Shun
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 53 (10) : 2853 - 2861
  • [45] On closure schemes for polynomial chaos expansions of stochastic differential equations
    Creamer, Dennis B.
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2008, 18 (02) : 197 - 218
  • [46] Rational Polynomial Chaos Expansions for the Stochastic Macromodeling of Network Responses
    Manfredi, Paolo
    Grivet-Talocia, Stefano
    [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67 (01): : 225 - 234
  • [47] Stochastic Optimal Control using Polynomial Chaos Variational Integrators
    Boutselis, George I.
    De La Torre, Gerardo
    Theodorou, Evangelos A.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6586 - 6591
  • [48] A splitting/polynomial chaos expansion approach for stochastic evolution equations
    Kofler, Andreas
    Levajkovic, Tijana
    Mena, Hermann
    Ostermann, Alexander
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1345 - 1381
  • [49] Stochastic vehicle handling prediction using a polynomial chaos approach
    Li, Lin
    Sandu, Corina
    [J]. INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2013, 63 (04) : 327 - 363
  • [50] Stochastic Finite Element Method Using Polynomial Chaos Expansion
    Zhao, W.
    Liu, J. K.
    [J]. ADVANCES IN MECHANICAL DESIGN, PTS 1 AND 2, 2011, 199-200 : 500 - +