Anomaly detection in polarimetric radar images

被引:3
作者
Melamed, Georgy [1 ]
Rotman, Stanley R. [2 ]
Blumberg, Dan G. [3 ]
Weiss, Anthony J. [1 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, IL-69978 Ramat Aviv, Israel
[2] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
[3] Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel
关键词
TARGET DETECTION; SAR; DECOMPOSITION; SEGMENTATION; CALIBRATION; STATISTICS; PHASE;
D O I
10.1080/01431161.2010.550650
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
An unsupervised anomaly detection algorithm for synthetic aperture radar (SAR) images, making use of polarized data, is developed. The processing contains several stages, including calibration of the images, extraction of information parameters and speckle filtering, detection of candidate pixels and application of a constant false alarm rate (CFAR) morphology operator. The developed algorithm is independent of the anomaly's radar cross section (RCS); it depends only on the physical structure of the observed objects. The proposed processing is non-iterative, adaptive and semi-automatic. Performance evaluation shows improved performance of the algorithm over the common alternatives.
引用
收藏
页码:1164 / 1189
页数:26
相关论文
共 24 条
[1]   Orientation angle preserving a posteriori polarimetric SAR calibration [J].
Ainsworth, TL ;
Ferro-Famil, L ;
Lee, JS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (04) :994-1003
[2]  
BOERNER W.M., 2005, RTOENSET081 UICECE C
[3]  
Bolter R, 2000, INT C PATT RECOG, P291, DOI 10.1109/ICPR.2000.902916
[4]  
Born M., 1999, PRINCIPLES OPTICS, P25
[5]   Algorithms for point target detection in hyperspectral imagery [J].
Caefer, CE ;
Rotman, SR ;
Silverman, J ;
Yip, PW .
IMAGING SPECTROMETRY VIII, 2002, 4816 :242-257
[6]   Multiscale segmentation and anomaly enhancement of SAR imagery [J].
Fosgate, CH ;
Krim, H ;
Irving, WW ;
Karl, WC ;
Willsky, AS .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (01) :7-20
[7]   A multiscale hypothesis testing approach to anomaly detection and localization from noisy tomographic data [J].
Frakt, AB ;
Karl, WC ;
Willsky, AS .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (06) :825-837
[8]   Anomaly detection based on an iterative local statistics approach [J].
Goldman, A ;
Cohen, I .
SIGNAL PROCESSING, 2004, 84 (07) :1225-1229
[9]  
Gonzalez R.C., 2002, Digital Image Processing, P523
[10]  
Kimura H, 2004, INT GEOSCI REMOTE SE, P184