Hierarchy of chaotic maps with an invariant measure

被引:48
作者
Jafarizadeh, MA [1 ]
Behnia, S
Khorram, S
Nagshara, H
机构
[1] Tabriz Univ, Dept Theoret Phys & Astrophys, Tabriz 51664, Iran
[2] Inst Studies Theoret Phys & Math, Tehran 19395, Iran
[3] Res Inst Fundamental Sci, Tabriz 51664, Iran
[4] IAU, Plasma Phys Res Ctr, Tehran 14835, Iran
[5] IAU, Dept Phys, Ourmia, Iran
[6] Tabriz Univ, Ctr Appl Phys Res, Tabriz 51664, Iran
关键词
chaos; invariant measure; entropy; Lyapunov characteristic exponent; ergodic dynamical systems;
D O I
10.1023/A:1010449627146
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give hierarchy of one-parameter family Phi(alpha, x) of maps at the interval [0, 1] with an invariant measure. Using the measure, we calculate Kolmogorov-Sinai entropy, or equivalently Lyapunov characteristic exponent of these maps analytically, where the results thus obtained have been approved with the numerical simulation. In contrary to the usual one-parameter family of maps such as logistic and tent maps, these maps do not possess period doubling or period-n-tupling cascade bifurcation to chaos, but they have single fixed point attractor for certain values of the parameter, where they bifurcate directly to chaos without having period-n-tupling scenario exactly at those values of the parameter whose Lyapunov characteristic exponent begins to be positive.
引用
收藏
页码:1013 / 1028
页数:16
相关论文
共 10 条
[1]   Random perturbations of chaotic dynamical systems: stability of the spectrum [J].
Blank, M ;
Keller, G .
NONLINEARITY, 1998, 11 (05) :1351-1364
[2]  
Cornfeld I. P., 1982, Ergodic Theory
[3]  
Froyland G., 1997, P 1997 INT S NONL TH, V2, P1129
[4]  
Froyland G., 1995, RANDOM COMPUT DYN, V3, P251
[6]   INTERMITTENT TRANSITION TO TURBULENCE IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
POMEAU, Y ;
MANNEVILLE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (02) :189-197
[7]  
ROBERT L, 1982, INTRO CHAOTIC DYNAMI
[8]   An analytical construction of the SRB measures for Baker-type maps [J].
Tasaki, S ;
Gilbert, T ;
Dorfman, JR .
CHAOS, 1998, 8 (02) :424-443
[9]   ERGODIC PROPERTIES OF PIECEWISE-LINEAR MAPS ON FRACTAL REPELLERS [J].
TASAKI, S ;
SUCHANECKI, Z ;
ANTONIOU, I .
PHYSICS LETTERS A, 1993, 179 (02) :103-110
[10]  
Wang Z.X., 1989, Special Functions