Finite-element modelling of no-insulation HTS coils using rotated anisotropic resistivity

被引:45
作者
Mataira, R. C. [1 ]
Ainslie, M. D. [2 ]
Badcock, R. A. [1 ]
Bumby, C. W. [1 ]
机构
[1] Victoria Univ Wellington, Robinson Res Inst, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
[2] Engn Dept, Bulk Superconduct Grp, Trumpington St, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
no-insulation; REBCO tapes; H-formulation; AC loss; rotated resistivity anisotropy; HTS modelling; AC-LOSSES;
D O I
10.1088/1361-6668/ab9688
中图分类号
O59 [应用物理学];
学科分类号
摘要
The no-insulation (NI) winding method is an effective technique for winding coils from high-T-c superconductors (HTS). NI coils are electrically and thermally robust due to their ability to radially bypass current away from the fragile superconducting path when necessary. This avoids stored magnetic energy being entirely discharged on local defects in the HTS tape. However, the increased degrees of freedom for the current distribution makes finite-element modelling of these coils a complicated and multi-level problem. Here we present and validate a 2D axially symmetric model of an NI (or partially insulated) coli that captures all the inherent electromagnetic properties of these coils, including axial vs radial current flow and critical current suppression, and also reproduces the well-known charging and discharging characteristics. The model is validated against previously reported discharge measurements, and is shown to produce results consistent with the expected equivalent-circuit behaviour. Only by solving the NI coli problem with both axial and radial fidelity can the interplay of critical current anisotropy and turn-to-turn current be properly accounted for. The reported FE model will now enable coli designers to simulate key complex behaviours observed in NI coils, such as shielding currents, magnetic field inhomogeneity and remnant field effects.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires
    Ainslie, Mark D.
    Bumby, Chris W.
    Jiang, Zhenan
    Toyomoto, Ryuki
    Amemiya, Naoyuki
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2018, 31 (07)
  • [2] ANDRIANOV VV, 1970, SOV PHYS JETP-USSR, V31, P815
  • [3] Understanding quench in no-insulation (NI) REBCO magnets through experiments and simulations
    Bhattarai, Kabindra R.
    Kim, Kwanglok
    Kim, Kwangmin
    Radcliff, Kyle
    Hu, Xinbo
    Im, Chaemin
    Painter, Thomas
    Dixon, Iain
    Larbalestier, David
    Lee, SangGap
    Hahn, Seungyong
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (03)
  • [4] A Design Study on 40 MW Synchronous Motor With No-Insulation HTS Field Winding
    Bong, Uijong
    An, Soobin
    Voccio, John
    Kim, Jaemin
    Lee, Jung Tae
    Lee, Jihoon
    Han, Ki Jin
    Lee, Haigun
    Hahn, Seungyong
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (05)
  • [5] Brittles G, 2019, P MT26 IND TUE AF PO
  • [6] The transient voltage response of ReBCO coated conductors exhibiting dynamic resistance
    Brooks, J. M.
    Ainslie, M. D.
    Jiang, Zhenan
    Pantoja, A. E.
    Badcock, R. A.
    Bumby, C. W.
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (03)
  • [7] A Study on the No Insulation Winding Method of the HTS Coil
    Choi, Sukjin
    Jo, Hyun Chul
    Hwang, Young Jin
    Hahn, Seungyong
    Ko, Tae Kuk
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
  • [8] AC losses in a finite Z stack using an anisotropic homogeneous-medium approximation
    Clem, John R.
    Claassen, J. H.
    Mawatari, Yasunori
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2007, 20 (12) : 1130 - 1139
  • [9] Finite-Element Formulations for Systems With High-Temperature Superconductors
    Dulare, Julien
    Gemaine, Christophe
    Vanderheydene, Benoit
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2020, 30 (03)
  • [10] 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet
    Hahn, Seungyong
    Kim, Kwanglok
    Kim, Kwangmin
    Hu, Xinbo
    Painter, Thomas
    Dixon, Iain
    Kim, Seokho
    Bhattarai, Kabindra R.
    Noguchi, So
    Jaroszynski, Jan
    Larbalestier, David C.
    [J]. NATURE, 2019, 570 (7762) : 496 - +