Tumor-associated human dendritic cell subsets: Phenotype, functional orientation, and clinical relevance

被引:36
作者
Plesca, Ioana [1 ]
Mueller, Luise [1 ]
Boettcher, Jan P. [2 ]
Medyouf, Hind [3 ,4 ,5 ,6 ]
Wehner, Rebekka [1 ,7 ,8 ,9 ]
Schmitz, Marc [1 ,7 ,8 ,9 ]
机构
[1] Tech Univ Dresden, Inst Immunol, Fac Med Carl Gustav Carus, Dresden, Germany
[2] Tech Univ Munich TUM, Sch Med, Inst Mol Immunol & Expt Oncol, Klinikum Rechts Isar, Munich, Germany
[3] Georg Speyer Haus, Inst Tumor Biol & Expt Therapy, Frankfurt, Germany
[4] Frankfurt Canc Inst, Frankfurt, Germany
[5] German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Frankfurt, Germany
[6] German Canc Res Ctr, Heidelberg, Germany
[7] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[8] Partner Site Dresden, Dresden, Germany
[9] German Canc Res Ctr, German Canc Consortium DKTK, Heidelberg, Germany
关键词
Conventional dendritic cells; Monocyte-derived dendritic cells; Plasmacytoid dendritic cells; Tumor immunotherapy; Tumor microenvironment; CD8(+) T-CELLS; CANCER; RECRUITMENT; IMMUNITY; MICROENVIRONMENT; PROGRESSION; TRAFFICKING; CONTRIBUTE; PROGNOSIS; EXPANSION;
D O I
10.1002/eji.202149487
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
DCs play a pivotal role in orchestrating innate and adaptive antitumor immunity. Activated DCs can produce large amounts of various proinflammatory cytokines, initiate T-cell responses, and exhibit direct cytotoxicity against tumor cells. They also efficiently enhance the antitumoral properties of NK cells and T lymphocytes. Based on these capabilities, immunogenic DCs promote tumor elimination and are associated with improved survival of patients. Furthermore, they can essentially contribute to the clinical efficacy of immunotherapeutic strategies for cancer patients. However, depending on their intrinsic properties and the tumor microenvironment, DCs can be rendered dysfunctional and mediate tolerance by producing immunosuppressive cytokines and activating Treg cells. Such tolerogenic DCs can foster tumor progression and are linked to poor prognosis of patients. Here, we focus on recent studies exploring the phenotype, functional orientation, and clinical relevance of tumor-infiltrating conventional DC1, conventional DC2, plasmacytoid DCs, and monocyte-derived DCs in translational and clinical settings. In addition, recent findings demonstrating the influence of DCs on the efficacy of immunotherapeutic strategies are summarized.
引用
收藏
页码:1750 / 1758
页数:9
相关论文
共 97 条
[1]   Impaired circulating myeloid CD1c+dendritic cell function in human glioblastoma is restored by p38 inhibition - implications for the next generation of DC vaccines [J].
Adhikaree, Jason ;
Franks, Hester Ann ;
Televantos, Constantinos ;
Vaghela, Poonam ;
Kaur, Aanchal Preet ;
Walker, David ;
Schmitz, Marc ;
Jackson, Andrew Mark ;
Patel, Poulam Manubhai .
ONCOIMMUNOLOGY, 2019, 8 (07)
[2]   Plasmacytoid Dendritic Cells Support Melanoma Progression by Promoting Th2 and Regulatory Immunity through OX40L and ICOSL [J].
Aspord, Caroline ;
Leccia, Marie-Therese ;
Charles, Julie ;
Plumas, Joel .
CANCER IMMUNOLOGY RESEARCH, 2013, 1 (06) :402-415
[3]   Prognostic impact of high levels of circulating plasmacytoid dendritic cells in breast cancer [J].
Bailur, Jithendra Kini ;
Gueckel, Brigitte ;
Pawelec, Graham .
JOURNAL OF TRANSLATIONAL MEDICINE, 2016, 14
[4]   A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments [J].
Barry, Kevin C. ;
Hsu, Joy ;
Broz, Miranda L. ;
Cueto, Francisco J. ;
Binnewies, Mikhail ;
Combes, Alexis J. ;
Nelson, Amanda E. ;
Loo, Kimberly ;
Kumar, Raj ;
Rosenblum, Michael D. ;
Alvarado, Michael D. ;
Wolf, Denise M. ;
Bogunovic, Dusan ;
Bhardwaj, Nina ;
Daud, Adil, I ;
Ha, Patrick K. ;
Ryan, William R. ;
Pollack, Joshua L. ;
Samad, Bushra ;
Asthana, Saurabh ;
Chan, Vincent ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (08) :1178-1191
[5]   Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity [J].
Binnewies, Mikhail ;
Mujal, Adriana M. ;
Pollack, Joshua L. ;
Combes, Alexis J. ;
Hardison, Emily A. ;
Barry, Kevin C. ;
Tsui, Jessica ;
Ruhland, Megan K. ;
Kersten, Kelly ;
Abushawish, Marwan A. ;
Spasic, Marko ;
Giurintano, Jonathan P. ;
Chan, Vincent ;
Daud, Adil, I ;
Ha, Patrick ;
Ye, Chun J. ;
Roberts, Edward W. ;
Krummel, Matthew F. .
CELL, 2019, 177 (03) :556-+
[6]   The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity [J].
Boettcher, Jan P. ;
Reis e Sousa, Caetano .
TRENDS IN CANCER, 2018, 4 (11) :784-792
[7]   NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control [J].
Boettcher, Jan P. ;
Bonavita, Eduardo ;
Chakravarty, Probir ;
Blees, Hanna ;
Cabeza-Cabrerizo, Mar ;
Sammicheli, Stefano ;
Rogers, Neil C. ;
Sahai, Erik ;
Zelenay, Santiago ;
Reis e Sousa, Caetano .
CELL, 2018, 172 (05) :1022-+
[8]   The clinical application of cancer immunotherapy based on naturally circulating dendritic cells [J].
Bol, Kalijn F. ;
Schreibelt, Gerty ;
Rabold, Katrin ;
Wculek, Stefanie K. ;
Schwarze, Julia Katharina ;
Dzionek, Andrzej ;
Teijeira, Alvaro ;
Kandalaft, Lana E. ;
Romero, Pedro ;
Coukos, George ;
Neyns, Bart ;
Sancho, David ;
Melero, Ignacio ;
de Vries, I. Jolanda M. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
[9]   CD4+ T cell help in cancer immunology and immunotherapy [J].
Borst, Jannie ;
Ahrends, Tomasz ;
Babala, Nikolina ;
Melief, Cornelis J. M. ;
Kastenmueller, Wolfgang .
NATURE REVIEWS IMMUNOLOGY, 2018, 18 (10) :635-647
[10]   Phenotype, function, and differentiation potential of human monocyte subsets [J].
Boyette, Lisa B. ;
Macedo, Camila ;
Hadi, Kevin ;
Elinoff, Beth D. ;
Walters, John T. ;
Ramaswamil, Bala ;
Chalasani, Geetha ;
Taboas, Juan M. ;
Lakkis, Fadi G. ;
Metes, Diana M. .
PLOS ONE, 2017, 12 (04)