Magnetostatic and exchange coupling in the magnetization reversal of trilayer nanodots

被引:23
作者
Vavassori, P. [1 ,2 ,3 ]
Bonanni, V. [2 ,3 ]
Busato, A. [2 ,3 ]
Bisero, D. [2 ,3 ]
Gubbiotti, G. [4 ]
Adeyeye, A. O. [5 ]
Goolaup, S. [5 ]
Singh, N. [5 ]
Spezzani, C. [6 ]
Sacchi, M. [7 ]
机构
[1] CIC NanoGUNE Consolider, Donostia San Sebastian, Spain
[2] Univ Ferrara, CNR, INFM S3, I-44100 Ferrara, Italy
[3] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy
[4] Univ Perugia, Dipartimento Fis, CNISM, I-06100 Perugia, Italy
[5] Natl Univ Singapore, Informat Storage Mat Lab, Dept Elect & Comp Engn, Singapore 117576, Singapore
[6] Sincrotrone Trieste SCpA, Trieste, Italy
[7] Synchrotron SOLEIL, Gif Sur Yvette, France
关键词
D O I
10.1088/0022-3727/41/13/134014
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an experimental investigation of the magnetization reversal process in Ni80Fe20(10nm)/Cu/Co(10nm) sub-micrometric circular discs for two different thicknesses of the Cu spacer ( 1 and 10 nm). Magnetic hysteresis loops were measured by the longitudinal magneto-optical Kerr effect and by resonant scattering of polarized soft x-ray. The results for the 10 nm thick Cu interlayer show a complex magnetization reversal process determined by the interplay between the interlayer dipolar interaction and the different reversal nucleation fields in the two layers. It is worth noting that, during the reversal process, the magnetization of the two layers remains in a nearly single domain state due to the dipolar coupling. These findings are confirmed by three-dimensional micromagnetic simulations. In contrast, when the Cu spacer is 1 nm thick both measurements and simulations show that the reversal is accomplished via the formation of a vortex state in both discs due to the presence of a ferromagnetic exchange coupling that competes with the dipolar interaction.
引用
收藏
页数:5
相关论文
共 16 条
[1]  
BOBO JF, 1993, MATER RES SOC SYMP P, V313, P467, DOI 10.1557/PROC-313-467
[2]   Magnetic remanent states and magnetization reversal in patterned trilayer nanodots [J].
Buchanan, KS ;
Guslienko, KY ;
Doran, A ;
Scholl, A ;
Bader, SD ;
Novosad, V .
PHYSICAL REVIEW B, 2005, 72 (13)
[3]   Single-domain circular nanomagnets [J].
Cowburn, RP ;
Koltsov, DK ;
Adeyeye, AO ;
Welland, ME ;
Tricker, DM .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :1042-1045
[4]   Spin-polarized current induced switching in Co/Cu/Co pillars [J].
Grollier, J ;
Cros, V ;
Hamzic, A ;
George, JM ;
Jaffrès, H ;
Fert, A ;
Faini, G ;
Ben Youssef, J ;
Legall, H .
APPLIED PHYSICS LETTERS, 2001, 78 (23) :3663-3665
[5]   Field dependence of spin excitations in NiFe/Cu/NiFe trilayered circular dots [J].
Gubbiotti, G ;
Madami, M ;
Tacchi, S ;
Carlotti, G ;
Okuno, T .
PHYSICAL REVIEW B, 2006, 73 (14)
[6]   FERROMAGNETIC AND ANTIFERROMAGNETIC EXCHANGE COUPLING IN BCC EPITAXIAL ULTRATHIN FE(001)/CU(001)/FE(001) TRILAYERS [J].
HEINRICH, B ;
CELINSKI, Z ;
COCHRAN, JF ;
MUIR, WB ;
RUDD, J ;
ZHONG, QM ;
ARROTT, AS ;
MYRTLE, K ;
KIRSCHNER, J .
PHYSICAL REVIEW LETTERS, 1990, 64 (06) :673-676
[7]   Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars [J].
Katine, JA ;
Albert, FJ ;
Buhrman, RA ;
Myers, EB ;
Ralph, DC .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3149-3152
[8]   OSCILLATORY MAGNETIC EXCHANGE COUPLING THROUGH THIN COPPER LAYERS [J].
PARKIN, SSP ;
BHADRA, R ;
ROCHE, KP .
PHYSICAL REVIEW LETTERS, 1991, 66 (16) :2152-2155
[9]   OSCILLATORY INTERLAYER EXCHANGE AND MAGNETORESISTANCE IN FE/CU MULTILAYERS [J].
PETROFF, F ;
BARTHELEMY, A ;
MOSCA, DH ;
LOTTIS, DK ;
FERT, A ;
SCHROEDER, PA ;
PRATT, WP ;
LOLOEE, R ;
LEQUIEN, S .
PHYSICAL REVIEW B, 1991, 44 (10) :5355-5357
[10]   Layer-resolved magnetometry of a magnetic bilayer using the magnetooptical Kerr effect with varying angle of incidence [J].
Pufall, MR ;
Platt, C ;
Berger, A .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) :4818-4820