Carbon dots embedded metal-organic framework@molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin

被引:129
作者
Xu, Longhua [1 ,2 ]
Pan, Mingfei [1 ]
Fang, Guozhen [1 ]
Wang, Shuo [1 ]
机构
[1] Tianjin Univ Sci & Technol, State Key Lab Food Nutr & Safety, Key Lab Food Nutr & Safety, Minist Educ, Tianjin 300457, Peoples R China
[2] Shandong Agr Univ, Coll Food Sci & Engn, Key Lab Food Proc Technol & Qual Control Shandong, Tai An 271018, Shandong, Peoples R China
关键词
Metal-organic framework; Carbon dots; Molecularly imprinted polymer; Fluorescent sensor; GRAPHENE QUANTUM DOTS; ONE-POT SYNTHESIS; FLUORESCENT DETECTION; ROOM-TEMPERATURE; POLYMER; WATER; SENSOR; MOFS; LIGHT; MILK;
D O I
10.1016/j.snb.2019.01.156
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A facile and efficient one-pot approach for the synthesis of carbon dots embedded metal-organic framework@molecularly imprinted polymer nanoparticles (CDs@MOF@MIP), which can be used for highly selective and sensitive optosensing of quercetin (QCT), is reported herein for the first time. Metal-organic frameworks (MOFs) with high specific surface area and porosity were first prepared via a room-temperature reaction and used as a matrix to construct MOF-based sensor. Then, highly blue luminescent carbon dots (CDs) were introduced to act as signal transducer that can sense the bonding interactions between the developed sensor and the target molecules and further transduce them to the detectable fluorescence signals. Final, through a surface molecular imprinting process, the resulting CDs@MOF@MIP was obtained. The CDs@MOF@MIP not only exhibited higher selectivity and sensitivity toward target molecular compared to carbon dots embedded metal-organic framework@non-imprinted polymer (CDs@MOF@NIP), but also showed faster reaction rate than CDs-embedded molecularly imprinted polymer (CDs@MIP) derived from the introduction of porous MOF and the optical detection. This proposed sensor was employed to sense trace QCT, and its fluorescence presented a well linear decline with the increasing concentration of QCT from 0 mu M to 50.0 mu M with a limit of detection of 2.9 nM (S/N = 3), and the precision for eleven replicate detections of 0.5 mu M QCT was 1.9%. This developed CDs@MOF@MIP sensor was also used to determine QCT content in real Ginkgo biloba extract capsules with satisfactory performance, and the results were correlated well with those obtained using high performance liquid chromatography.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 52 条
[1]   Molecularly Imprinted Polymers in Electrochemical and Optical Sensors [J].
Ahmad, Omar S. ;
Bedwell, Thomas S. ;
Esen, Cem ;
Garcia-Cruz, Alvaro ;
Piletsky, Sergey A. .
TRENDS IN BIOTECHNOLOGY, 2019, 37 (03) :294-309
[2]   Highly Luminescent Metal-Organic Frameworks Through Quantum Dot Doping [J].
Buso, Dario ;
Jasieniak, Jacek ;
Lay, Matthew D. H. ;
Schiavuta, Piero ;
Scopece, Paolo ;
Laird, Jamie ;
Amenitsch, Heinz ;
Hill, Anita J. ;
Falcaro, Paolo .
SMALL, 2012, 8 (01) :80-88
[3]   Ratiometric Nanothermometer Based on an Emissive Ln3+-Organic Framework [J].
Cadiau, Amandine ;
Brites, Carlos D. S. ;
Costa, Pedro M. F. J. ;
Ferreira, Rute A. S. ;
Rocha, Joao ;
Carlos, Luis D. .
ACS NANO, 2013, 7 (08) :7213-7218
[4]   Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for pH Sensitive Targeted Anticancer Drug Delivery [J].
Chowdhuri, Angshuman Ray ;
Singh, Tanya ;
Ghosh, Sudip Kumar ;
Sahu, Sumanta Kumar .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (26) :16573-16583
[5]   Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations [J].
Chughtai, Adeel H. ;
Ahmad, Nazir ;
Younus, Hussein A. ;
Laypkov, A. ;
Verpoort, Francis .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (19) :6804-6849
[6]   Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J].
Cravillon, Janosch ;
Muenzer, Simon ;
Lohmeier, Sven-Jare ;
Feldhoff, Armin ;
Huber, Klaus ;
Wiebcke, Michael .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1410-1412
[7]   Metal-Organic Frameworks as Platforms for Functional Materials [J].
Cui, Yuanjing ;
Li, Bin ;
He, Huajun ;
Zhou, Wei ;
Chen, Banglin ;
Qian, Guodong .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (03) :483-493
[8]   Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications [J].
Cui, Yuanjing ;
Chen, Banglin ;
Qian, Guodong .
COORDINATION CHEMISTRY REVIEWS, 2014, 273 :76-86
[9]   Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs [J].
Deria, Pravas ;
Gomez-Gualdron, Diego A. ;
Hod, Idan ;
Snurr, Randall Q. ;
Hupp, Joseph T. ;
Farha, Omar K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (43) :14449-14457
[10]   Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations [J].
Fairen-Jimenez, D. ;
Moggach, S. A. ;
Wharmby, M. T. ;
Wright, P. A. ;
Parsons, S. ;
Dueren, T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (23) :8900-8902