Max-Min 3-Dispersion Problems

被引:0
作者
Horiyama, Takashi [1 ]
Nakano, Shin-ichi [2 ]
Saitoh, Toshiki [3 ]
Suetsugu, Koki [4 ]
Suzuki, Akira [6 ]
Uehara, Ryuhei [7 ]
Uno, Takeaki [5 ]
Wasa, Kunihiro [8 ]
机构
[1] Hokkaido Univ, Sapporo, Hokkaido 0600814, Japan
[2] Gunma Univ, Dept Comp Sci, Fac Engn, Kiryu, Gumma 3768515, Japan
[3] Kyushu Inst Technol, Iizuka, Fukuoka 8208502, Japan
[4] Natl Inst Informat, Takeaki Uno Lab, Tokyo 1018430, Japan
[5] Natl Inst Informat, Tokyo 1018430, Japan
[6] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[7] JAIST, Sch Informat Sci, Nomi 9231292, Japan
[8] Toyohashi Univ Technol, Toyohashi, Aichi 4418580, Japan
关键词
algorithms; dispersion problem; facility location; APPROXIMATION ALGORITHMS; DISPERSION;
D O I
10.1587/transfun.2020DMP0003
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set P of n points on which facilities can be placed and an integer k, we want to place k facilities on some points so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem. In this paper, we consider the 3-dispersion problem when P is a set of points on a plane (2-dimensional space). Note that the 2-dispersion problem corresponds to the diameter problem. We give an O(n) time algorithm to solve the 3-dispersion problem in the L-infinity metric, and an O(n) time algorithm to solve the 3-dispersion problem in the L-1 metric. Also, we give an O(n(2) log n) time algorithm to solve the 3-dispersion problem in the L-2 metric.
引用
收藏
页码:1101 / 1107
页数:7
相关论文
共 22 条
[1]   Efficient algorithms for geometric optimization [J].
Agarwal, PK ;
Sharir, M .
ACM COMPUTING SURVEYS, 1998, 30 (04) :412-458
[2]  
Akagi T., 2016, IPSJ SIG Technical Reports, 2016-AL-158-3
[3]   Exact Algorithms for the Max-Min Dispersion Problem [J].
Akagi, Toshihiro ;
Araki, Tetsuya ;
Horiyama, Takashi ;
Nakano, Shin-ichi ;
Okamoto, Yoshio ;
Otachi, Yota ;
Saitoh, Toshiki ;
Uehara, Ryuhei ;
Uno, Takeaki ;
Wasa, Kunihiro .
FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 :263-272
[4]   Max-Min Dispersion on a Line [J].
Araki, Tetsuya ;
Nakano, Shin-ichi .
COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 :672-678
[5]  
Baur C., 1998, Approximation Algorithms for Combinatorial Optimization. International Workshop APPROX'98. Proceedings, P63, DOI 10.1007/BFb0053964
[6]   An Improved Analysis for a Greedy Remote-Clique Algorithm Using Factor-Revealing LPs [J].
Birnbaum, Benjamin ;
Goldman, Kenneth J. .
ALGORITHMICA, 2009, 55 (01) :42-59
[7]  
Cevallos A, 2017, PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P130
[8]   Approximation algorithms for dispersion problems [J].
Chandra, B ;
Halldórsson, MM .
JOURNAL OF ALGORITHMS, 2001, 38 (02) :438-465
[9]  
Drezner Z., 1995, Facility location: a survey of applications and methods
[10]  
Drezner Z., 2004, FACILITY LOCATION AP