A Compactness Theorem for Complete Ricci Shrinkers

被引:61
作者
Haslhofer, Robert [1 ]
Mueller, Reto [2 ]
机构
[1] ETH, CH-8092 Zurich, Switzerland
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
基金
瑞士国家科学基金会;
关键词
Ricci solitons; Ricci flow; Gauss-Bonnet with boundary; CURVATURE DECAY; INEQUALITIES;
D O I
10.1007/s00039-011-0137-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove precompactness in an orbifold Cheeger-Gromov sense of complete gradient Ricci shrinkers with a lower bound on their entropy and a local integral Riemann bound. We do not need any pointwise curvature assumptions, volume or diameter bounds. In dimension four, under a technical assumption, we can replace the local integral Riemann bound by an upper bound for the Euler characteristic. The proof relies on a Gauss-Bonnet with cutoff argument.
引用
收藏
页码:1091 / 1116
页数:26
相关论文
共 42 条
[1]  
Abresch U., 1990, J AM MATH SOC, V3, P355, DOI DOI 10.1090/S0894-0347-1990-1030656-6
[2]  
Anderson MT., 1989, J. Am. Math. Soc, V2, P455, DOI [10.1090/S0894-0347-1989-0999661-1, DOI 10.1090/S0894-0347-1989-0999661-1, DOI 10.2307/1990939]
[3]  
Anderson MT., 1991, Geom. Funct. Anal, V1, P231, DOI [DOI 10.1007/BF01896203, 10.1007/BF01896203]
[4]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[5]  
[Anonymous], 2007, Clay Mathematics Institute Monographs
[6]  
[Anonymous], 2002, ARXIVMATH0211159V1
[7]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[8]  
Bessières L, 2010, EMS TRACTS MATH, V13, P1, DOI 10.4171/082
[9]  
Cao H.-D., 2006, ARXIVMATH0612069V1
[10]  
Cao H.-D., 2009, ADV LECT MATH ALM, V11