Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts

被引:185
作者
Berestycki, H
Hamel, F
Roques, L
机构
[1] EHESS, CAM, F-75006 Paris, France
[2] Univ Aix Marseille 3, LATP, Fac Sci & Tech, F-13397 Marseille, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2005年 / 84卷 / 08期
关键词
environment model; pulsating fronts; minimal speed; reaction-diffusion equation; periodic media;
D O I
10.1016/j.matpur.2004.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with propagation phenomena for reaction-diffusion equations of the type: u(t) - del (.) (A(x)del u) = f (x, u), x is an element of R-N, where A is a given periodic diffusion matrix field, and f is a given nonlinearity which is periodic in the x-variables. This article is the sequel to [H. Berestycki, F Hamel, L. Roques, Analysis of the periodically fragmented environment model: I-influence of periodic heterogeneous environment on species persistence, Preprint]. The existence of pulsating fronts describing the biological invasion of the uniform 0 state by a heterogeneous state is proved here. A variational characterization of the minimal speed of such pulsating fronts is proved and the dependency of this speed on the heterogeneity of the medium is also analyzed. (c) 2005 Published by Elsevier SAS.
引用
收藏
页码:1101 / 1146
页数:46
相关论文
共 30 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]   Reaction diffusion in fast steady flow [J].
Audoly, B ;
Berestycki, H ;
Pomeau, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (03) :255-262
[3]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[4]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[5]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[6]  
BERESTYCKI H, IN PRESS COMM MATH P
[7]  
BERESTYCKI H, IN PRESS COMM PARTIA
[8]  
BERESTYCKI H, PLANAR TRAVELLING FR
[9]  
BERESTYCKI H, IN PRESS J EUROP MAT
[10]  
BERESTYCKI H, ANAL PERIODICALLY FR