Correlation between Transient Response and Neuromorphic Behavior in Organic Electrochemical Transistors

被引:24
作者
Yamamoto, Shunsuke [1 ,2 ,3 ]
Polyravas, Anastasios G. [1 ]
Han, Sanggil [1 ]
Malliaras, George G. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Elect Engn Div, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat IMRAM, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Grad Sch Engn, 6-6-11 Aramaki Aoba, Sendai, Miyagi 9808579, Japan
关键词
neuromorphic devices; organic electrochemical transistors; transient responses; DEVICE;
D O I
10.1002/aelm.202101186
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The factors controlling the neuromorphic response of organic electrochemical transistors (OECTs) are examined. In these devices, the gate voltage is used to supply the pre-synaptic input, while the drain current is taken as the post-synaptic output. The behavior of devices made from polymer blends of a mixed conductor (PEDOT:PSS) and an ion conductor (PSSNa) is analyzed. The experimental results highlight that the post-synaptic response timescale depends on the size of ion in the electrolyte. Modeling shows that the neuromorphic response is controlled by the transient response of the ionic circuit of the OECT. These insights on device response time pave the way for a more rational design of OECT-based neuromorphic devices.
引用
收藏
页数:7
相关论文
共 59 条
[1]   On a generic theory of the organic electrochemical transistor dynamics [J].
Athanasiou, Vasileios ;
Pecqueur, Sebastien ;
Vuillaume, Dominique ;
Konkoli, Zoran .
ORGANIC ELECTRONICS, 2019, 72 :39-49
[2]   The Role of the Internal Capacitance in Organic Memristive Device for Neuromorphic and Sensing Applications [J].
Battistoni, Silvia ;
Cocuzza, Matteo ;
Marasso, Simone Luigi ;
Verna, Alessio ;
Erokhin, Victor .
ADVANCED ELECTRONIC MATERIALS, 2021, 7 (11)
[3]   How conducting polymer electrodes operate [J].
Berggren, Magnus ;
Malliaras, George G. .
SCIENCE, 2019, 364 (6437) :233-234
[4]   Enzymatic sensing with organic electrochemical transistors [J].
Bernards, Daniel A. ;
Macaya, Daniel J. ;
Nikolou, Maria ;
DeFranco, John A. ;
Takamatsu, Seiichi ;
Malliaras, George G. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (01) :116-120
[5]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[6]  
Binran, 2004, HDB CHEM PURE CHEM
[7]   Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation [J].
Brzosko, Zuzanna ;
Zannone, Sara ;
Schultz, Wolfram ;
Clopath, Claudia ;
Paulsen, Ole .
ELIFE, 2017, 6 :1-18
[8]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[9]   Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold [J].
Campana, Alessandra ;
Cramer, Tobias ;
Simon, Daniel T. ;
Berggren, Magnus ;
Biscarini, Fabio .
ADVANCED MATERIALS, 2014, 26 (23) :3874-3878
[10]   Role of the Anion on the Transport and Structure of Organic Mixed Conductors [J].
Cendra, Camila ;
Giovannitti, Alexander ;
Savva, Achilleas ;
Venkatraman, Vishak ;
McCulloch, Iain ;
Salleo, Alberto ;
Inal, Sahika ;
Rivnay, Jonathan .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (05)