Behavior of Prescribed Mean Curvature Hypersurfaces on Reentrant Ridges

被引:0
作者
Khanfer, Ammar [1 ]
Lancaster, Kirk E. [1 ]
机构
[1] Prince Sultan Univ, Dept Math & Sci, Riyadh, Saudi Arabia
关键词
Prescribed mean curvature; Dirichlet problem; Radial limits; RADIAL LIMITS; CAPILLARY SURFACES; BOUNDARY-BEHAVIOR; MINIMAL SURFACE; EXISTENCE;
D O I
10.1007/s12220-022-01016-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the behavior of nonparametric hypersurfaces of prescribed mean curvature near reentrant ridges on the boundary of the domain for rotationally symmetric Dirichlet problems and generalize [8, Theorem 1] to higher dimensions.
引用
收藏
页数:11
相关论文
共 30 条
[1]  
[Anonymous], 1976, Ann. Sc. Norm. Super. Pisa, Cl. Sci.
[2]   BEHAVIOR OF SOLUTIONS OF ELLIPTIC DIFFERENTIAL-INEQUALITIES NEAR A POINT OF DISCONTINUOUS BOUNDARY DATA [J].
BEAR, HS ;
HILE, GN .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1983, 8 (11) :1175-1197
[3]  
Bernstein S.N., 1912, ANN SCI ECOLE NORM S, V29, P431, DOI [10.24033/asens.651, DOI 10.24033/ASENS.651]
[4]  
Concus P, 1973, LBL2033
[5]  
Courant R., 1977, DIRICHLETS PRINCIPLE
[6]   ON CUSP SOLUTIONS TO A PRESCRIBED MEAN CURVATURE EQUATION [J].
Echart, Alexandra K. ;
Lancaster, Kirk E. .
PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (01) :47-54
[7]   ON THE BEHAVIOR OF A NONPARAMETRIC MINIMAL SURFACE IN A NONCONVEX QUADRILATERAL [J].
ELCRAT, AR ;
LANCASTER, KE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 94 (03) :209-&
[8]   BOUNDARY-BEHAVIOR OF A NONPARAMETRIC SURFACE OF PRESCRIBED MEAN-CURVATURE NEAR A REENTRANT CORNER [J].
ELCRAT, AR ;
LANCASTER, KE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (02) :645-650
[9]   Radial Limits of Nonparametric PMC Surfaces with Intermediate Boundary Curvature [J].
Entekhabi, Mozhgan Nora ;
Lancaster, Kirk Eugene .
TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (03) :599-613
[10]   Boundary Continuity of Nonparametric Prescribed Mean Curvature Surfaces [J].
Entekhabi, Mozhgan Nora ;
Lancaster, Kirk E. .
TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (02) :483-499