Highly compressible 3D periodic graphene aerogel microlattices

被引:975
作者
Zhu, Cheng [1 ]
Han, T. Yong-Jin [1 ]
Duoss, Eric B. [1 ]
Golobic, Alexandra M. [1 ]
Kuntz, Joshua D. [1 ]
Spadaccini, Christopher M. [1 ]
Worsley, Marcus A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
ELASTIC-MODULUS; SURFACE-AREA; ULTRALIGHT; INDENTATION; RHEOLOGY; HARDNESS; SHEETS; OXIDE;
D O I
10.1038/ncomms7962
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.
引用
收藏
页数:8
相关论文
共 59 条
[1]   On the Gelation of Graphene Oxide [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5545-5551
[2]   A pH-sensitive graphene oxide composite hydrogel [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2010, 46 (14) :2376-2378
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Mesoscale assembly of chemically modified graphene into complex cellular networks [J].
Barg, Suelen ;
Perez, Felipe Macul ;
Ni, Na ;
Pereira, Paula do Vale ;
Maher, Robert C. ;
Garcia-Tunon, Esther ;
Eslava, Salvador ;
Agnoli, Stefano ;
Mattevi, Cecilia ;
Saiz, Eduardo .
NATURE COMMUNICATIONS, 2014, 5
[5]   Low Temperature Casting of Graphene with High Compressive Strength [J].
Bi, Hengchang ;
Yin, Kuibo ;
Xie, Xiao ;
Zhou, Yilong ;
Wan, Neng ;
Xu, Feng ;
Banhart, Florian ;
Sun, Litao ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2012, 24 (37) :5124-5129
[6]   In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures [J].
Chen, Wufeng ;
Yan, Lifeng .
NANOSCALE, 2011, 3 (08) :3132-3137
[7]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[8]   Highly porous metals and ceramics [J].
Colombo, P. ;
Degischer, H. P. .
MATERIALS SCIENCE AND TECHNOLOGY, 2010, 26 (10) :1145-1158
[9]   3D-Printing of Lightweight Cellular Composites [J].
Compton, Brett G. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (34) :5930-+
[10]   Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (03) :2693-2703