SOME NEW HADAMARD TYPE INEQUALITIES FOR CO-ORDINATED m-CONVEX AND (α, m)-CONVEX FUNCTIONS

被引:0
作者
Ozdemir, M. Emin [1 ]
Set, Erhan [2 ]
Sarikaya, Mehmet Zeki [1 ]
机构
[1] Ataturk Univ, Dept Math, KK Educ Fac, Erzurum, Turkey
[2] Duzce Univ, Dept Math, Fac Sci & Arts, Duzce, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2011年 / 40卷 / 02期
关键词
m-convex function; (alpha; m)-convex function; co-ordinated convex mapping; Hermite-Hadamard inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some new Hermite-Hadamard type inequalities for m-convex and (alpha, m)-convex functions of 2-variables on the co-ordinates.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 9 条
[1]  
Alomari M., 2008, Int. J. Contemp. Math. Sci., V3, P1557
[2]  
[Anonymous], 1993, Stud. U. Babes-Bol. Mat.
[3]  
Bakula M.K., 2008, J. Ineq. Pure Appl. Math, V9, P96
[4]   Variants of Cebysev's inequality with applications [J].
Bakula, M. Klaricic ;
Matkovic, A. ;
Pecaric, J. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
[5]  
Dragomir S. S., 2000, RGMIA Monographs
[6]   On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane [J].
Dragomir, SS .
TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (04) :775-788
[7]  
Mihesan V. G., 1993, A Generalization of the Convexity, Seminar on Functional Equations, Approximation and Convexity
[8]  
Set E, 2009, RGMIA RES REP COLL, V12, P4
[9]  
Toader G., 1985, P C APPR OPT CLUJ NA, P329, DOI DOI 10.12691/TJANT-2-3-1