Biohorology and biomarkers of aging: Current state-of-the-art, challenges and opportunities

被引:119
作者
Galkin, Fedor [1 ,2 ]
Mamoshina, Polina [3 ]
Aliper, Alex [1 ]
de Magalhaes, Joao Pedro [2 ,5 ]
Gladyshev, Vadim N. [4 ]
Zhavoronkov, Alex [1 ,5 ,6 ]
机构
[1] InSil Med, Sci Pk, Hong Kong, Peoples R China
[2] Univ Liverpool, Inst Ageing & Chron Dis, Integrat Genom Ageing Grp, Liverpool, Merseyside, England
[3] Deep Longev, Sci Pk, Hong Kong, Peoples R China
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA
[5] Biogerontol Res Fdn, London, England
[6] Buck Inst Res Aging, Novato, CA 94945 USA
关键词
Aging; Biogerontology; Aging clock; Deep learning; Neural network; BIOLOGICAL AGE; TELOMERASE ACTIVITY; REPLICATIVE SENESCENCE; LENGTH; LONGEVITY; EPIDEMIOLOGY; MORTALITY; DISEASE;
D O I
10.1016/j.arr.2020.101050
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The aging process results in multiple traceable footprints, which can be quantified and used to estimate an organism's age. Examples of such aging biomarkers include epigenetic changes, telomere attrition, and alterations in gene expression and metabolite concentrations. More than a dozen aging clocks use molecular features to predict an organism's age, each of them utilizing different data types and training procedures. Here, we offer a detailed comparison of existing mouse and human aging clocks, discuss their technological limitations and the underlying machine learning algorithms. We also discuss promising future directions of research in biohorology - the science of measuring the passage of time in living systems. Overall, we expect deep learning, deep neural networks and generative approaches to be the next power tools in this timely and actively developing field.
引用
收藏
页数:13
相关论文
共 120 条
[1]   Personal aging markers and ageotypes revealed by deep longitudinal profiling [J].
Ahadi, Sara ;
Zhou, Wenyu ;
Schussler-Fiorenza Rose, Sophia Miryam ;
Sailani, M. Reza ;
Contrepois, Kevin ;
Avina, Monika ;
Ashland, Melanie ;
Brunet, Anne ;
Snyder, Michael .
NATURE MEDICINE, 2020, 26 (01) :83-+
[2]  
Aird Katherine M, 2013, Methods Mol Biol, V965, P185, DOI 10.1007/978-1-62703-239-1_12
[3]   Towards natural mimetics of metformin and rapamycin [J].
Aliper, Alexander ;
Jellen, Leslie ;
Cortese, Franco ;
Artemov, Artem ;
Karpinsky-Semper, Darla ;
Moskalev, Alexey ;
Swick, Andrew G. ;
Zhavoronkov, Alex .
AGING-US, 2017, 9 (11) :2245-2268
[4]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[5]  
[Anonymous], M ADDA UNSUPERVISED
[6]  
[Anonymous], ZOLOTAYA ANTILOPA
[7]  
[Anonymous], 2016, GENERATIVE ADVERSARI
[8]   Visualizing the effects of predictor variables in black box supervised learning models [J].
Apley, Daniel W. ;
Zhu, Jingyu .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (04) :1059-1086
[9]   Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks [J].
Armstrong, Nicola J. ;
Mather, Karen A. ;
Thalamuthu, Anbupalam ;
Wright, Margaret J. ;
Trollor, Julian N. ;
Ames, David ;
Brodaty, Henry ;
Schofield, Peter R. ;
Sachdev, Perminder S. ;
Kwok, John B. .
EPIGENOMICS, 2017, 9 (05) :689-700
[10]   The Epidemiology of Human Telomeres: Faults and Promises [J].
Aviv, Abraham .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2008, 63 (09) :979-983