A functional limit theorem for the profile of search trees

被引:33
作者
Drmota, Michael [1 ]
Janson, Svante [2 ]
Neininger, Ralph [3 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[3] Univ Frankfurt, Dept Math & Comp Sci, D-60325 Frankfurt, Germany
关键词
functional limit theorem; search trees; profile of trees; random trees; analysis of algorithms;
D O I
10.1214/07-AAP457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the profile X-n,X-k of random search trees including binary search trees and m-ary search trees. Our main result is a functional limit theorem of the normalized profile X-n,X-k/EXn,k for k = [alpha logn] in a certain range of alpha. A central feature of the proof is the use of the contraction method to prove convergence in distribution of certain random analytic functions in a complex domain. This is based on a general theorem concerning the contraction method for random variables in an infinite-dimensional Hilbert space. As part of the proof, we show that the Zolotarev metric is complete for a Hilbert space.
引用
收藏
页码:288 / 333
页数:46
相关论文
共 32 条
[1]  
[Anonymous], 1977, URN MODELS THEIR APP
[2]  
BENTKUS YV, 1984, THEOR VEROYATNOST PR, V29, P49
[3]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[4]   The density of the ISE and local limit laws for embedded trees [J].
Bousquet-Melou, Mireille ;
Janson, Svante .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) :1597-1632
[5]   Martingales and profile of binary search trees [J].
Chauvin, B ;
Klein, T ;
Marckert, JF ;
Rouault, A .
ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 :420-435
[6]  
Chauvin B, 2001, ANN APPL PROBAB, V11, P1042
[7]  
CHAUVIN B, 2004, J IRANIAN STAT SOC, V3, P89
[8]   The random multisection problem, travelling waves and the distribution of the height of m-ary search trees [J].
Chauvin, Brigitte ;
Drmota, Michael .
ALGORITHMICA, 2006, 46 (3-4) :299-327
[9]   An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms [J].
Chern, HH ;
Hwang, HK ;
Tsai, TH .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2002, 44 (01) :177-225
[10]  
Chern HH, 2001, ALGORITHMICA, V29, P44, DOI 10.1007/s004530010054