On the halt of spontaneous capillary flows in diverging open channels

被引:9
作者
Berthier, J. [1 ,2 ]
Brakke, K. A. [3 ]
Gosselin, D. [1 ,2 ]
Navarro, F. [1 ,2 ]
Belgacem, N. [4 ]
Chaussy, D. [4 ]
Berthier, E. [5 ,6 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, LETI, MINATEC Campus,17,Ave Martyrs, F-38054 Grenoble, France
[3] Susquehanna Univ, Math Dept, Selinsgrove, PA 17870 USA
[4] Univ Grenoble, Grenoble INP Pagora, LGP2, 461 Rue Papeterie,CS 10065, F-38402 St Martin Dheres, France
[5] Tasso Inc, 1631 15th Ave West 105, Seattle, WA 98119 USA
[6] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
Open microfluidics; Capillarity; Diverging channels; Valves; LIQUIDS;
D O I
10.1016/j.medengphy.2017.05.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to their compactness and independence of exterior energy sources, capillary microsystems are increasingly used in many different scientific domains, from biotechnology to medicine and biology, chemistry, energy and space. Obtaining a capillary flow depends on channel geometry and contact angle. A general condition for the establishment of a spontaneous capillary flow in a uniform cross section channel has already been derived from Gibbs free energy. In this work, we consider spontaneous capillary flows (SCF) in diverging open rectangular channels and suspended channels, and we show that they do not flow indefinitely but stop at some location in the channel. In the case of linearly diverging open channels, we derive the expression that determines the location where the flow stops. The theoretical approach is verified by using the Surface Evolver numerical program and is checked by experiments. The approach is extended to sudden enlargements, and it is shown that the enlargements can act as stop and trigger valves. (C) 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 27 条
[1]  
[Anonymous], LOW COST MICRODEVICE
[2]   Suspended microflows between vertical parallel walls [J].
Berthier, J. ;
Brakke, K. A. ;
Gosselin, D. ;
Bourdat, A. -G ;
Nonglaton, G. ;
Villard, N. ;
Laffite, G. ;
Boizot, F. ;
Costa, G. ;
Delapierre, G. .
MICROFLUIDICS AND NANOFLUIDICS, 2015, 18 (5-6) :919-929
[3]  
Berthier J., 2016, OPEN MICROFLUIDICS
[4]   Metastable capillary filaments in rectangular cross-section open microchannels [J].
Berthier, Jean ;
Brakke, Kenneth A. ;
Gosselin, David ;
Huet, Maxime ;
Berthier, Erwin .
AIMS BIOPHYSICS, 2014, 1 (01) :31-48
[5]   A general condition for spontaneous capillary flow in uniform cross-section microchannels [J].
Berthier, Jean ;
Brakke, Kenneth A. ;
Berthier, Erwin .
MICROFLUIDICS AND NANOFLUIDICS, 2014, 16 (04) :779-785
[6]  
Brakke K., 1992, Exper. Math, V1, P141, DOI DOI 10.1080/10586458.1992.10504253
[7]   Suspended microfluidics [J].
Casavant, Benjamin P. ;
Berthier, Erwin ;
Theberge, Ashleigh B. ;
Berthier, Jean ;
Montanez-Sauri, Sara I. ;
Bischel, Lauren L. ;
Brakke, Kenneth ;
Hedman, Curtis J. ;
Bushman, Wade ;
Keller, Nancy P. ;
Beebe, David J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (25) :10111-10116
[8]  
Cho H, 2004, NSTI NANOTECHNOL, V2004, P1
[9]   ON BEHAVIOR OF A CAPILLARY SURFACE IN A WEDGE [J].
CONCUS, P ;
FINN, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1969, 63 (02) :292-&
[10]   Capillary channel flow experiments aboard the International Space Station [J].
Conrath, M. ;
Canfield, P. J. ;
Bronowicki, P. M. ;
Dreyer, M. E. ;
Weislogel, M. M. ;
Grah, A. .
PHYSICAL REVIEW E, 2013, 88 (06)