MAP MRF joint segmentation and registration of medical images

被引:65
作者
Wyatt, PP [1 ]
Noble, JA [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Med Vis Lab, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
segmentation; registration; joint; combined;
D O I
10.1016/S1361-8415(03)00067-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problems of segmentation and registration are traditionally approached individually, yet the accuracy of one is of great importance in influencing the success of the other. In this paper, we aim to show that more accurate and robust results may be obtained through seeking a joint solution to these linked processes. The outlined approach applies Markov random fields in the solution of a maximum a posteriori model of segmentation and registration. The approach is applied to synthetic and real MRI data. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:539 / 552
页数:14
相关论文
共 28 条
[21]  
PENNEC X, 1998, J COMPUTER VISION RE, V1, P58
[22]   Segmentation, registration, and measurement of shape variation via image object shape [J].
Pizer, SM ;
Fritsch, DS ;
Yushkevich, PA ;
Johnson, VE ;
Chaney, EL .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (10) :851-865
[23]  
ROCHE A, 2000, RR3980 INRIA
[24]  
ROCHE A, 1999, RR3741 INRIA
[25]  
Vetterling W. T, 2002, NUMERICAL RECIPES C
[26]  
Wells W M 3rd, 1996, Med Image Anal, V1, P35
[27]  
Yezzi A, 2001, IEEE WORKSHOP ON MATHEMATICAL METHODS IN BIOMEDICAL IMAGE ANALYSIS, PROCEEDINGS, P44, DOI 10.1109/MMBIA.2001.991698
[28]   Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J].
Zhang, YY ;
Brady, M ;
Smith, S .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (01) :45-57