A SKELETAL FINITE ELEMENT METHOD CAN COMPUTE LOWER EIGENVALUE BOUNDS

被引:9
作者
Carstensen, Carsten [1 ]
Zhai, Qilong [2 ]
Zhang, Ran [2 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[2] Jilin Univ, Dept Math, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
eigenvalue bounds; weak Galerkin; finite element method; WEAK GALERKIN METHOD; DISCONTINUOUS GALERKIN; HYBRIDIZATION;
D O I
10.1137/18M1212276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The skeletal finite element method (FEM) in this paper is a hybridized discontinuous Galerkin FEM with the Lehrenfeld-Schiiberl stabilization and also known as a weak Galerkin FEM. With an appropriate stabilization, it provides eigenvalue approximations for the Laplacian on any regular triangulation T with maximal mesh-size h(max), which are guaranteed lower eigenvalue bounds (GLB) if they are sufficiently large. This paper establishes a bound alpha(T) for a global stabilization parameter alpha such that alpha <= alpha(T) leads to an eigenvalue approximation lambda(h) <= lambda for the exact eigenvalue lambda, provided kappa(2)(CR)h(max)(2) lambda(h) <= 1 for a universal constant kappa(CR). For a 2D triangulation T into triangles, a comparison with the bound CRGLB := lambda(CR)/(1 + epsilon lambda(CR)) <= lambda from [C. Carstensen and J. Gedicke, Math. Comp., 83 (2014), pp. 2605-2629] proves under the same conditions that CRGLB <= lambda(h) <= lambda. The paper also provides an alternative proof of the already established asymptotic lower bound property.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 2008, ANAL FINITE ELEMENT
[2]  
Babuka I., 1991, HDB NUMERICAL ANAL, VII, P641
[3]  
Boffi D., 2013, SPRINGER SERIES COMP, V44, DOI DOI 10.1007/978-3-642-36519-5
[4]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[5]  
Brenner S. C., 2004, ENCY COMPUT MECH
[6]  
Carstensen C., J COMPUT MATH
[7]   GUARANTEED LOWER BOUNDS FOR EIGENVALUES [J].
Carstensen, Carsten ;
Gedicke, Joscha .
MATHEMATICS OF COMPUTATION, 2014, 83 (290) :2605-2629
[8]   Guaranteed lower eigenvalue bounds for the biharmonic equation [J].
Carstensen, Carsten ;
Gallistl, Dietmar .
NUMERISCHE MATHEMATIK, 2014, 126 (01) :33-51
[9]   Static Condensation, Hybridization, and the Devising of the HDG Methods [J].
Cockburn, Bernardo .
BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 :129-177
[10]   BRIDGING THE HYBRID HIGH-ORDER AND HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS [J].
Cockburn, Bernardo ;
Di Pietro, Daniele A. ;
Ern, Alexandre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03) :635-650