Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease

被引:82
作者
Elias, Pierre [1 ,2 ]
Poterucha, Timothy J. [1 ,2 ]
Rajaram, Vijay [1 ,2 ]
Moller, Luca Matos [1 ,2 ]
Rodriguez, Victor [3 ]
Bhave, Shreyas [3 ]
Hahn, Rebecca T. [1 ,2 ]
Tison, Geoffrey [4 ]
Abreau, Sean A. [4 ]
Barrios, Joshua [4 ]
Torres, Jessica Nicole [5 ]
Hughes, J. Weston [5 ]
Perez, Marco, V [5 ]
Finer, Joshua [2 ]
Kodali, Susheel [1 ,2 ]
Khalique, Omar [1 ,2 ]
Hamid, Nadira [1 ,2 ]
Schwartz, Allan [1 ,2 ]
Homma, Shunichi [1 ,2 ]
Kumaraiah, Deepa [1 ,2 ]
Cohen, David J. [6 ,7 ]
Maurer, Mathew S. [1 ,2 ]
Einstein, Andrew J. [1 ,2 ]
Nazif, Tamim [1 ,2 ]
Leon, Martin B. [1 ,2 ,6 ]
Perotte, Adler J. [3 ]
机构
[1] Columbia Univ, Dept Med, Irving Med Ctr, Seymour Paul & Gloria Milstein Div Cardiol, New York, NY USA
[2] NewYork Presbyterian Hosp, New York, NY USA
[3] Columbia Univ, Dept Biomed Informat, New York, NY 10032 USA
[4] Univ Calif San Francisco, Div Cardiol, San Francisco, CA USA
[5] Stanford Univ, Div Cardiol, Palo Alto, CA 94304 USA
[6] Cardiovasc Res Fdn, New York, NY USA
[7] St Francis Hosp, Dept Cardiol, Roslyn, NY USA
基金
美国国家卫生研究院;
关键词
aortic regurgitation; aortic stenosis; artificial intelligence; deep learning; mitral regurgitation; valvular heart disease; LEFT-VENTRICULAR HYPERTROPHY; EARLY SURGICAL INTERVENTION; AORTIC-VALVE-REPLACEMENT; MITRAL REGURGITATION; ARTIFICIAL-INTELLIGENCE; TRANSCATHETER; ALGORITHM; MORTALITY; STENOSIS; CRITERIA;
D O I
10.1016/j.jacc.2022.05.029
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Valvular heart disease is an important contributor to cardiovascular morbidity and mortality and re-mains underdiagnosed. Deep learning analysis of electrocardiography (ECG) may be useful in detecting aortic stenosis (AS), aortic regurgitation (AR), and mitral regurgitation (MR). OBJECTIVES This study aimed to develop ECG deep learning algorithms to identify moderate or severe AS, AR, and MR alone and in combination. METHODS A total of 77,163 patients undergoing ECG within 1 year before echocardiography from 2005-2021 were identified and split into train (n = 43,165), validation (n = 12,950), and test sets (n = 21,048; 7.8% with any of AS, AR, or MR). Model performance was assessed using area under the receiver-operating characteristic (AU-ROC) and precision -recall curves. Outside validation was conducted on an independent data set. Test accuracy was modeled using different disease prevalence levels to simulate screening efficacy using the deep learning model. RESULTS The deep learning algorithm model accuracy was as follows: AS (AU-ROC: 0.88), AR (AU-ROC: 0.77), MR (AU -ROC: 0.83), and any of AS, AR, or MR (AU-ROC: 0.84; sensitivity 78%, specificity 73%) with similar accuracy in external validation. In screening program modeling, test characteristics were dependent on underlying prevalence and selected sensitivity levels. At a prevalence of 7.8%, the positive and negative predictive values were 20% and 97.6%, respectively. CONCLUSIONS Deep learning analysis of the ECG can accurately detect AS, AR, and MR in this multicenter cohort and may serve as the basis for the development of a valvular heart disease screening program. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.
引用
收藏
页码:613 / 626
页数:14
相关论文
共 30 条
[1]   Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea [J].
Adedinsewo, Demilade ;
Carter, Rickey E. ;
Attia, Zachi ;
Johnson, Patrick ;
Kashou, Anthony H. ;
Dugan, Jennifer L. ;
Albus, Michael ;
Sheele, Johnathan M. ;
Bellolio, Fernanda ;
Friedman, Paul A. ;
Lopez-Jimenez, Francisco ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008437
[2]   External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction [J].
Attia, Itzhak Zachi ;
Tseng, Andrew S. ;
Benavente, Ernest Diez ;
Medina-Inojosa, Jose R. ;
Clark, Taane G. ;
Malyutina, Sofia ;
Kapa, Suraj ;
Schirmer, Henrik ;
Kudryavtsev, Alexander, V ;
Noseworthy, Peter A. ;
Carter, Rickey E. ;
Ryabikov, Andrew ;
Perel, Pablo ;
Friedman, Paul A. ;
Leon, David A. ;
Lopez-Jimenez, Francisco .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 329 :130-135
[3]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[4]   Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study [J].
Bachtiger, Patrik ;
Petri, Camille F. ;
Scott, Francesca E. ;
Park, Se Ri ;
Kelshiker, Mihir A. ;
Sahemey, Harpreet K. ;
Dumea, Bianca ;
Alquero, Regine ;
Padam, Pritpal S. ;
Hatrick, Isobel R. ;
Ali, Alfa ;
Ribeiro, Maria ;
Cheung, Wing-See ;
Bual, Nina ;
Rana, Bushra ;
Shun-Shin, Matthew ;
Kramer, Daniel B. ;
Fragoyannis, Alex ;
Keene, Daniel ;
Plymen, Carla M. ;
Peters, Nicholas S. .
LANCET DIGITAL HEALTH, 2022, 4 (02) :E117-E125
[5]   Electrocardiogram screening for aortic valve stenosis using artificial intelligence [J].
Cohen-Shelly, Michal ;
Attia, Zachi, I ;
Friedman, Paul A. ;
Ito, Saki ;
Essayagh, Benjamin A. ;
Ko, Wei-Yin ;
Murphree, Dennis H. ;
Michelena, Hector, I ;
Enriquez-Sarano, Maurice ;
Carter, Rickey E. ;
Johnson, Patrick W. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Oh, Jae K. .
EUROPEAN HEART JOURNAL, 2021, 42 (30) :2885-+
[6]   Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort Study [J].
d'Arcy, Joanna L. ;
Coffey, Sean ;
Loudon, Margaret A. ;
Kennedy, Andrew ;
Pearson-Stuttard, Jonathan ;
Birks, Jacqueline ;
Frangou, Eleni ;
Farmer, Andrew J. ;
Mant, David ;
Wilson, Jo ;
Myerson, Saul G. ;
Prendergast, Bernard D. .
EUROPEAN HEART JOURNAL, 2016, 37 (47) :3515-+
[7]   Mortality and morbidity of aortic regurgitation in clinical practice - A long-term follow-up study [J].
Dujardin, KS ;
Enriquez-Sarano, M ;
Schaff, HV ;
Bailey, KR ;
Seward, JB ;
Tajik, AJ .
CIRCULATION, 1999, 99 (14) :1851-1857
[8]   Early surgical intervention or watchful waiting for the management of asymptomatic mitral regurgitation: a systematic review and meta-analysis [J].
Goldstone, Andrew B. ;
Patrick, William L. ;
Cohen, Jeffrey E. ;
Aribeana, Chiaka N. ;
Popat, Rita ;
Woo, Y. Joseph .
ANNALS OF CARDIOTHORACIC SURGERY, 2015, 4 (03) :220-+
[9]  
Hardt M, 2016, Arxiv, DOI arXiv:1610.02413
[10]   Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis [J].
Kang, Duk-Hyun ;
Park, Sung-Ji ;
Lee, Seung-Ah ;
Lee, Sahmin ;
Kim, Dae-Hee ;
Kim, Hyung-Kwan ;
Yun, Sung-Cheol ;
Hong, Geu-Ru ;
Song, Jong-Min ;
Chung, Cheol-Hyun ;
Song, Jae-Kwan ;
Lee, Jae-Won ;
Park, Seung-Woo .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (02) :111-119