The full Muntz theorem in C[0,1] and L(1)[0,1]

被引:37
作者
Borwein, P [1 ]
Erdelyi, T [1 ]
机构
[1] TEXAS A&M UNIV,DEPT MATH,COLLEGE STN,TX 77843
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1996年 / 54卷
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1112/jlms/54.1.102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper is the establishment of the 'full Muntz Theorem' in C[0, 1]. This characterizes the sequences {lambda(i)}(infinity)(i-1) of distinct, positive real numbers for which span 1, x(lambda 1), x(lambda 2),...) is dense in C[0, 1]. The novelty of this result is the treatment of the most difficult case when inf(i) lambda(i) = 0 while sup(i) lambda(i) = infinity. The paper settles the L(infinity) and L(i) cases of the following. THEOREM (Full Muntz Theorem in L(p)[0,1]). Let p is an element of[1,infinity]. Suppose that {lambda(i)}(i)(i-0)nfinity is a sequence of distinct real numbers greater than -1/p. Then span {x(lambda 0),x lambda 1,...} is dense in L?p[0,1] if and only if [GRAPHICS] d only if [GRAPHICS] +...+ X(n)</SUP>; moreover, we show that the sequence {C-n} is asymptotic to (2/pi)e(1-y)(2n)(n). These results generalize work of the first author on binary forms and will likely find application in the enumeration of solutions of decomposable form inequalities.
引用
收藏
页码:102 / 110
页数:9
相关论文
共 28 条
[2]  
[Anonymous], 1984, Mathematics
[3]  
[Anonymous], 1959, ETUDE SOMMES EXPONEN
[4]   RATIONAL COMBINATIONS OF X-LAMBDA-K, LAMBDA-K ]= 0 ARE ALWAYS DENSE IN C[0, 1] [J].
BAK, J ;
NEWMAN, DJ .
JOURNAL OF APPROXIMATION THEORY, 1978, 23 (02) :155-157
[5]  
BERNSTEIN SN, 1958, COLLECTED WORKS, V1
[6]  
Boas R. P., 1954, PURE APPL MATH, V5
[7]   MUNTZ SYSTEMS AND ORTHOGONAL MUNTZ-LEGENDRE POLYNOMIALS [J].
BORWEIN, P ;
ERDELYI, T ;
ZHANG, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (02) :523-542
[8]   NOTES ON LACUNARY MUNTZ POLYNOMIALS [J].
BORWEIN, P ;
ERDELYI, T .
ISRAEL JOURNAL OF MATHEMATICS, 1991, 76 (1-2) :183-192
[9]   ZEROS OF CHEBYSHEV POLYNOMIALS IN MARKOV SYSTEMS [J].
BORWEIN, P .
JOURNAL OF APPROXIMATION THEORY, 1990, 63 (01) :56-64
[10]   LACUNARY MUNTZ SYSTEMS [J].
BORWEIN, P ;
ERDELYI, T .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1993, 36 :361-374