Conditioned random walks and Levy processes

被引:2
|
作者
Doney, R. A. [1 ]
Jones, E. M. [2 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
[2] Univ Leicester, Dept Hlth Sci, Leicester LE1 7RH, Leics, England
关键词
LIMIT-THEOREMS;
D O I
10.1112/blms/bdr084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-1, X-2, ... be independent, identically distributed, zero mean random variables with (-alpha)regularly varying tails, alpha > 1. For S-n = Sigma(i=1)(n) X-i, it is known that under these distributional assumptions, P(S-n > x) similar to nP(X-1 > x) as x -> infinity, uniformly for x >= cn for any constant c > 0. Here, we show that the process M-n = max{S-i - i(mu) : i <= n}, for any constant mu >= 0, behaves in a similar manner. This allows us to generalize Durrett's results ['Conditioned limit theorems for random walks with negative drift', Z. Wahrscheinlichkeitstheorie verw. Gebiete 52 (1980) 277-287], by showing that, without any further assumptions, both (n-(1) S-[nt], 0 <= t <= 1 vertical bar S-n > na) and (n(-1) S-[nt], 0 <= t <= 1 vertical bar M-n > na) for any constant a > 0 converge weakly to a simple process consisting of a single 'large jump'. We show that similar results hold for general Levy processes, extending the work of Konstantopoulos and Richardson ['Conditional limit theorems for spectrally positive Levy processes', Adv. in Appl. Probab. 34 (2002) 158-178] who dealt with the special case of spectrally positive processes.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 50 条
  • [1] On a fluctuation identity for random walks and Levy processes
    Alili, L
    Chaumont, L
    Doney, RA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 141 - 148
  • [2] α-TRANSIENCE AND α-RECURRENCE FOR RANDOM WALKS AND LEVY PROCESSES
    ZHANG HUIZENG ZHAO MINZHI YING JIANGANG Department of Mathematics
    Chinese Annals of Mathematics, 2005, (01) : 127 - 142
  • [3] Random walks and Levy processes as rough paths
    Chevyrev, Ilya
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 891 - 932
  • [4] Lifting Levy processes to hyperfinite random walks
    Albeverio, Sergio
    Herzberg, Frederik S.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (08): : 697 - 706
  • [5] CONVEX MINORANTS OF RANDOM WALKS AND LEVY PROCESSES
    Abramson, Josh
    Pitman, Jim
    Ross, Nathan
    Uribe Bravo, Geronimo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 423 - 434
  • [6] THE GROWTH OF RANDOM-WALKS AND LEVY PROCESSES
    PRUITT, WE
    ANNALS OF PROBABILITY, 1981, 9 (06): : 948 - 956
  • [7] α-Transience and α-recurrence for random walks and Levy processes
    Zhang, HZ
    Zhao, MZ
    Ying, JG
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (01) : 127 - 142
  • [8] Spitzer's condition for random walks and Levy processes
    Bertoin, J
    Doney, RA
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (02): : 167 - 178
  • [9] Ratio limit theorems for random walks and Levy processes
    Zhao, MZ
    Ying, JG
    POTENTIAL ANALYSIS, 2005, 23 (04) : 357 - 380
  • [10] Tanaka's construction for random walks and Levy processes
    Doney, RA
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 1 - 4