Inequalities for the gamma function and estimates for the volume of sections of Bnp

被引:10
作者
Bastero, J [1 ]
Galve, F [1 ]
Peña, A [1 ]
Romance, M [1 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Matemat, E-50009 Zaragoza, Spain
关键词
Gamma function; inequalities; sections of convex bodies;
D O I
10.1090/S0002-9939-01-06139-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B-p(n)= {(x(i)) is an element of R-n; Sigma (n)(1) \x(i)\(p) less than or equal to 1} and let E be a k-dimensional subspace of R-n. We prove that \E boolean AND B-p(n) \(1/k)(k) greater than or equal to \B-p(n)\(1/n)(n), for 1 less than or equal to k less than or equal to (n - 1)/2 and k = n - 1 whenever 1 < p < 2. We also consider 0 < p < 1 and other related cases. We obtain sharp inequalities involving Gamma function in order to get these results.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 13 条