The Ehrlich-Aberth method for the nonsymmetric tridiagonal eigenvalue problem

被引:25
作者
Bini, DA
Gemignani, L
Tisseur, F
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
nonsymmetric eigenvalue problem; symmetric indefinite generalized eigenvalue problem; tridiagonal matrix; root finder; QR decomposition; divide and conquer;
D O I
10.1137/S0895479803429788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm based on the Ehrlich - Aberth iteration is presented for the computation of the zeros of p(lambda) = det( T - lambda I), where T is a real irreducible nonsymmetric tridiagonal matrix. The algorithm requires the evaluation of p(lambda)/ p'(lambda) = - 1/ trace( T - lambda I)(-1), which is done by exploiting the QR factorization of T - lambda I and the semiseparable structure of ( T - lambda I)-1. The choice of initial approximations relies on a divide-and-conquer strategy, and some results motivating this strategy are given. Guaranteed a posteriori error bounds based on a running error analysis are proved. A Fortran 95 module implementing the algorithm is provided and numerical experiments that confirm the effectiveness and the robustness of the approach are presented. In particular, comparisons with the LAPACK subroutine dhseqr show that our algorithm is faster for large dimensions.
引用
收藏
页码:153 / 175
页数:23
相关论文
共 40 条
[1]  
ABERTH O, 1973, MATH COMPUT, V27, P339, DOI 10.1090/S0025-5718-1973-0329236-7
[2]   TOWARDS A DIVIDE-AND-CONQUER ALGORITHM FOR THE REAL NONSYMMETRIC EIGENVALUE PROBLEM [J].
ADAMS, L ;
ARBENZ, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) :1333-1353
[3]  
[Anonymous], 1989, ITERATIVE METHODS SI
[4]   On computing Givens rotations reliably and efficiently [J].
Bindel, D ;
Demmel, J ;
Kahan, W ;
Marques, O .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (02) :206-238
[6]   Design, analysis, and implementation of a multiprecision polynomial rootfinder [J].
Bini, DA ;
Fiorentino, G .
NUMERICAL ALGORITHMS, 2000, 23 (2-3) :127-173
[7]  
BINI DA, 1999, MPSOLVE NUMERICAL CO
[8]   EIGENVALUES OF AX=LAMBDA-BX FOR REAL SYMMETRIC MATRICE-A AND MATRICE-B COMPUTED BY REDUCTION TO A PSEUDOSYMMETRIC FORM AND THE HR PROCESS [J].
BREBNER, MA ;
GRAD, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 43 (MAR) :99-118
[9]  
BUNSEGERSTNER A, 1981, LINEAR ALGEBRA APPL, V35, P155, DOI 10.1016/0024-3795(81)90271-8
[10]   INCLUSION OF THE ROOTS OF A POLYNOMIAL BASED ON GERSCHGORIN THEOREM [J].
CARSTENSEN, C .
NUMERISCHE MATHEMATIK, 1991, 59 (04) :349-360