A NOTE ON ENTANGLEMENT CLASSIFICATION FOR TRIPARTITE MIXED STATES

被引:0
作者
Zhao, Hui [1 ]
Liu, Yu-Qiu [1 ]
Wang, Zhi-Xi [2 ]
Fei, Shao-Ming [2 ]
机构
[1] Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Bell inequalities; separability; principal basis;
D O I
10.14311/AP.2022.62.0222
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the classification of entanglement in tripartite systems by using Bell-type inequalities and principal basis. By using Bell functions and the generalized three dimensional Pauli operators, we present a set of Bell inequalities which classifies the entanglement of triqutrit fully separable and bi-separable mixed states. By using the correlation tensors in the principal basis representation of density matrices, we obtain separability criteria for fully separable and bi-separable 2 circle times 2 circle times 3 quantum mixed states. Detailed example is given to illustrate our criteria in classifying the tripartite entanglement.
引用
收藏
页码:222 / 227
页数:6
相关论文
共 15 条
  • [1] Bell JS., 1964, Physics, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195]
  • [2] Multipartite generalization of the Schmidt decomposition
    Carteret, HA
    Higuchi, A
    Sudbery, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) : 7932 - 7939
  • [3] Bell's inequality and entanglement in qubits
    Chang, Po-Yao
    Chu, Su-Kuan
    Ma, Chen-Te
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [4] PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES
    CLAUSER, JF
    HORNE, MA
    SHIMONY, A
    HOLT, RA
    [J]. PHYSICAL REVIEW LETTERS, 1969, 23 (15) : 880 - &
  • [5] Bell-type inequalities to detect true n-body nonseparability -: art. no. 170405
    Collins, D
    Gisin, N
    Popescu, S
    Roberts, D
    Scarani, V
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 1704051 - 1704054
  • [6] Multipartite entanglement detection from correlation tensors
    de Vicente, Julio I.
    Huber, Marcus
    [J]. PHYSICAL REVIEW A, 2011, 84 (06):
  • [7] Entanglement Measure and Quantum Violation of Bell-Type Inequality
    Ding, Dong
    He, Ying-Qiu
    Yan, Feng-Li
    Gao, Ting
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (10) : 4231 - 4237
  • [8] Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A
    Podolsky, B
    Rosen, N
    [J]. PHYSICAL REVIEW, 1935, 47 (10): : 0777 - 0780
  • [9] Gottesman D, 1999, CHAOS SOLITON FRACT, V10, P1749, DOI 10.1016/S0960-0779(98)00218-5
  • [10] Huang XF, 2016, COMMUN THEOR PHYS, V65, P701, DOI 10.1088/0253-6102/65/6/701