Convergence of the Relative Pareto Efficient Sets

被引:4
作者
Nguyen Van Tuyen [1 ]
机构
[1] Hanoi Pedag Univ, Dept Math, 2,Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 05期
关键词
Stability; Relative Pareto efficient; Kuratowski-Painleve convergence; Relative containment property; Lower semicontinuity; VECTOR OPTIMIZATION PROBLEMS; LOWER SEMICONTINUITY; MINIMAL POINTS; MULTIOBJECTIVE PROBLEMS; CONTINUITY; STABILITY; MULTIFUNCTIONS; OPTIMALITY;
D O I
10.11650/tjm.20.2016.6229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present new results on the convergence of relative Pareto efficient sets and the lower semicontinuity of relative Pareto efficient point multifunctions under perturbations. Our results extend some results of Luc et al. [16, Theorem 2.1], Bednarczuk [4, Theorem 4] and [5, Proposition 3.1], Lucchetti and Miglierina [17, Proposition 3.1]. Some remarks and examples are provided for analysing the results obtained and for comparing them with the preceding results.
引用
收藏
页码:1149 / 1173
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 1990, SYSTEMS CONTROL FDN
[2]  
Bao TQ, 2012, VECTOR OPTIM, P467, DOI 10.1007/978-3-642-21114-0_13
[3]   Relative Pareto minimizers for multiobjective problems: existence and optimality conditions [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
MATHEMATICAL PROGRAMMING, 2010, 122 (02) :301-347
[4]  
Bednarczuk E. M., 1995, Optimization, V32, P373, DOI 10.1080/02331939508844057
[5]  
Bednarczuk E. M., 1992, P 1 WORLD C NONL AN, VI- IV, P2371
[6]   Continuity of minimal points with applications to parametric multiple objective optimization [J].
Bednarczuk, EM .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 157 (01) :59-67
[7]  
Bednarczuk EM, 2002, J CONVEX ANAL, V9, P327
[8]   A note on lower semicontinuity of minimal points [J].
Bednarczuk, EM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (03) :285-297
[9]  
Bednarczuk E, 2007, DISS MATH, P5
[10]   PARTIALLY FINITE CONVEX-PROGRAMMING .1. QUASI RELATIVE INTERIORS AND DUALITY-THEORY [J].
BORWEIN, JM ;
LEWIS, AS .
MATHEMATICAL PROGRAMMING, 1992, 57 (01) :15-48