MULTIPLE SOLUTIONS FOR PERIODIC PERTURBATIONS OF A DELAYED AUTONOMOUS SYSTEM NEAR AN EQUILIBRIUM

被引:3
作者
Amster, Pablo [1 ]
Paula Kuna, Mariel [1 ]
Robledo, Gonzalo [2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, IMAS,CONICET, Ciudad Univ,Pabellon 1,C1428EGA, Buenos Aires, DF, Argentina
[2] Univ Chile, Dept Matemat, Fac Ciencias, Casilla 653, Santiago, Chile
关键词
Delay differential systems; multiple periodic solutions; Poincare operator; fixed points; topological degree;
D O I
10.3934/cpaa.2019080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Small non-autonomous perturbations around an equilibrium of a nonlinear delayed system are studied. Under appropriate assumptions, it is shown that the number of T-periodic solutions lying inside a bounded domain Omega subset of R-N is, generically, at least vertical bar chi +/- 1 vertical bar + 1, where chi denotes the Euler characteristic of Omega. Moreover, some connections between the associated fixed point operator and the Poincare operator are explored.
引用
收藏
页码:1695 / 1709
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1968, The operator of translation along trajectories of differential equations
[2]  
Brown R. F., 2004, A topological introduction to nonlinear analysis, p2.2
[3]  
Gordon R.A., 1994, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, V4
[4]  
Haddad J., 2012, THESIS
[5]  
Hale JK., 1991, Dynamics and Bifurcations, DOI DOI 10.1007/978-1-4612-4342-7
[6]   Vector fields in n-dimensional Manifolds. [J].
Hopf, Heinz .
MATHEMATISCHE ANNALEN, 1927, 96 :225-250
[7]  
Krasnosel'skii M. A., 1984, Geometrical methods of nonlinear analysis
[8]  
Liu J.H., 2008, Topics on Stability and Periodicity in Abstract Differential Equations
[9]  
Milnor J. W., 1965, TOPOLOGY DIFFERENTIA
[10]   TOPOLOGICAL-DEGREE AND STABILITY OF PERIODIC-SOLUTIONS FOR CERTAIN DIFFERENTIAL-EQUATIONS [J].
ORTEGA, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 42 :505-516